The revised potential - $\mathbf{p H}$ diagram for $\mathbf{~} \mathbf{P b}-\mathbf{H}_{2} \mathrm{O}$ system

Pavel Anatolyevich NIKOLAYCHUK*

Department of Analytical and Physical Chemistry, Chelyabinsk State University, Chelyabinsk, Russian Federation

Abstract

Thermodynamic properties of lead species in aqueous solution are collected. The chemical equilibria between various forms of $\mathrm{Pb}(\mathrm{II})$ are considered. The speciation diagrams for the equilibria $4[\mathrm{PbOH}]^{+}(\mathrm{aq}) \rightleftarrows$ $\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq})$ and $2\left[\mathrm{~Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq})$, and the thermodynamic activity -pH diagram of $\mathrm{Pb}(\mathrm{II})$ species are plotted. Basic chemical and electrochemical equilibria for lead are calculated. The potential - pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system is revised.

Keywords: lead species, aqueous environment, speciation diagram, thermodynamic activity - pH diagram, chemical and electrochemical equilibria, Pourbaix diagram.

1. Introduction

Various types of phase diagrams have been developed for metal / aqueous medium systems. One of the most widely used is the Pourbaix diagram, also known as a potential - pH diagram, which is a graphic representation of equilibrium potential with respect to the standard hydrogen electrode (Y axis) versus pH (X axis) corresponding to the various equilibria between the different compounds of a given metal under standard thermodynamic conditions [1, 2]. Pourbaix diagram for lead has proved to be very useful in many fields, such as corrosion [3-8], industrial electrolysis, plating, electrowinning and electrorefining of metals [9-11], primary and secondary electrochemical cells [3, 12-15], water treatment and hydrometallurgy [16-21], geo- and environmental chemistry [22], energy science and engineering, analytical chemistry [23] and chemical education [24].

The first variant of the potential - pH diagram for lead presented by M. Pourbaix and co-workers [3, 25] has considered only the following lead species: $\mathrm{Pb}^{2+}, \mathrm{PbO}$, $\mathrm{HPbO}_{2}{ }^{-}$and PbO_{2}. The diagram proposed by Brookins [26-28] added $\mathrm{Pb}_{3} \mathrm{O}_{4}$ and PbOH^{+}to consideration. In the report presented by National Institute of Advanced Industrial Science and Technology of Japan [29] a series of diagrams collected from such thermodynamic databases as FACT, SUPCRT, LLNL, JNC-TDB and HATCHES were presented, but the only difference from the previously published diagrams was that $\mathrm{HPbO}_{2}{ }^{-}$was replaced by $\mathrm{Pb}(\mathrm{OH})_{3^{-}}$. The latest published Pourbaix diagrams for lead $[30,31]$ also did not add anything new to it.

However, all the presented versions of the potential pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system do not correspond to the phase diagram of $\mathrm{Pb}-\mathrm{O}$ system and do not take into account all possible lead oxides. Moreover, they do not consider the possibility of electrochemical reduction of lead to its hydride.

This study aims to collect the thermodynamic data on aqueous lead species stability, calculating the thermodynamic characteristics of chemical and
electrochemical equilibria of lead in aqueous media and revising the potential -pH diagram of $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system.

2. Thermodynamic data on lead oxides, hydrides, and aqueous species

The published phase diagram of $\mathrm{Pb}-\mathrm{O}$ system [32-34] indicates the presence of the following oxides at $25^{\circ} \mathrm{C}$ and 1 bar: $\mathrm{PbO}, \mathrm{Pb}_{3} \mathrm{O}_{4}$ [35-40], $\mathrm{Pb}_{12} \mathrm{O}_{17}$ [31, 41-44], $\mathrm{Pb}_{12} \mathrm{O}_{19}$ [41, 43-45] and PbO_{2}. The oxide $\mathrm{Pb}_{2} \mathrm{O}_{3}$ exists only at high pressures $[43,46]$. The existence of the oxides $\mathrm{Pb}_{2} \mathrm{O}$, $\mathrm{Pb}_{2} \mathrm{O}_{5}, \mathrm{~Pb}_{4} \mathrm{O}_{5}$ and $\mathrm{Pb}_{8} \mathrm{O}_{15}$ reported in the earlier studies [47-54] was not confirmed later. The interaction of lead with hydrogen can result in formation of lead hydrides $\mathrm{PbH}_{4}, \mathrm{~Pb}_{2} \mathrm{H}_{2}$ and $\mathrm{Pb}_{2} \mathrm{H}_{4}$ [55-57]. In an aqueous solution lead (II) species can exist as the cations $\mathrm{Pb}^{2+},[\mathrm{PbOH}]^{+}$, $\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+},\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+},\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}[58,59]$; also, lead can exist as the hydroxide $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{aq})$ and the anions $\mathrm{HPbO}_{2}{ }^{-}, \mathrm{Pb}(\mathrm{OH})_{3}{ }^{-}[29,60,61]$. Despite existence of many salts of both lead (IV) and orthoplumbic acid $\mathrm{H}_{4} \mathrm{PbO}_{4}$ [62], the species $\mathrm{Pb}^{4+}, \mathrm{Pb}(\mathrm{OH})_{4}(\mathrm{aq})$ and $\mathrm{PbO}_{4}{ }^{4-}$ were not isolated in the aqueous state, although the hydroxocomplex $\left[\mathrm{Pb}(\mathrm{OH})_{6}\right]^{2-}$ is relatively stable [63]. The notation of the aqueous species in the text and equations below ignores the water molecules in the coordination sphere.

The values of the standard Gibbs free energy of formation of the various lead species collected from various publications [29, 59, 64-67] are presented in Table 1. It can be seen that the data from the various sources slightly differ one from another, and for $\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})$ and PbO_{2} (s) these differences are noticeable. The values of $\Delta_{f} G_{298}^{0}$ for $\mathrm{PbO}(\mathrm{s}), \mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s}), \quad \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})$ and $\mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})$ were taken from the latest thermodynamic modelling of $\mathrm{Pb}-\mathrm{O}$ system [66], and the Gibbs energy of formation of the highest lead oxide PbO_{2} was taken from [29]. Two different values of $\Delta_{f} G_{298}^{0}$ for $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ [29, 59] are noticed, and the value from reference [29] was chosen, since it is consistent with the value of the solubility product $\left(K_{\text {sp }}\left(\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})\right)=1.43 \cdot 10^{-15}\right)$ [67]. Despite the reported solubility product of $\mathrm{Pb}(\mathrm{OH})_{4}(\mathrm{~s})$

[^0]$\left(\left(\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Pb}(\mathrm{OH})_{4}(\mathrm{~s})\right)=3.2 \cdot 10^{-66}\right)\right.$ [67], the standard Gibbs energy of hypothetic lead (IV) hydroxide cannot be estimated because the value of $\Delta_{f} G_{298}^{0}$ for $\mathrm{Pb}^{4+}(\mathrm{aq})$ is also not known.

The paper [68] reports the values of the standard electrode potentials for the half-cell reactions:

$$
\begin{aligned}
{\left[\mathrm{Pb}(\mathrm{OH})_{6}\right]^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} } & \rightleftarrows \\
& {\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\circ} } \\
& 0.3 \mathrm{~V}
\end{aligned}
$$

and
$\mathrm{Pb}(\mathrm{fcc})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftarrows \mathrm{PbH}_{4}(\mathrm{~g}) \mathrm{E}^{\circ}=-0.7 \mathrm{~V}$.
The standard Gibbs energies of formation for $\left[\mathrm{Pb}(\mathrm{OH})_{6}\right]^{2-}(\mathrm{aq})$ and $\mathrm{PbH}_{4}(\mathrm{~g})$ were estimated using these values (see Table 1). There is no thermodynamic information on the other lead hydrides.

Table 1. The standard Gibbs free energies of formation of the various lead species.

Compound	Reference state	$\Delta_{f} G_{298}^{\mathbf{0}}, \mathrm{J} \cdot \mathrm{mol}^{-1}$	Reference
Pb	s , face centered cubic	0	By convenience
PbO	s , tetragonal (red, litharge)	$-188940^{\text {d }}$	[66]
		-189 280	[65]
		-188 930	[59]
		-189 300	[29]
		-188900	[67]
		-188960	[64]
$\mathrm{Pb}(\mathrm{OH})_{2}$	s	-452 200	[59]
		$-421300{ }^{\text {d }}$	[29]
		-423 600	Calculated ${ }^{\text {a }}$
$\mathrm{Pb}_{3} \mathrm{O}_{4}$	s , tetragonal (red lead, minium)	$-615300^{\text {d }}$	[66]
		-601200	[67]
		-601 610	[65]
		-601200	[59]
		-616200	[29]
		-601710	[64]
$\mathrm{Pb}_{12} \mathrm{O}_{17}$	s	-2 508630	[66]
$\mathrm{Pb}_{12} \mathrm{O}_{19}$	s	-2533940	[66]
PbO_{2}	s, tetragonal (plattnerite)	-219 000 ${ }^{\text {d }}$	[29]
		-217300	[67]
		-215 400	[65]
		-217330	[59]
		-218370	[64]
Pb^{2+}	aq	-24700	[29]
		-24400	[67]
		$-24430^{\text {d }}$	[59]
[PbOH$]^{+}$	aq	-226 300	[59]
$\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}$	aq	-888 600	[59]
$\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}$	aq	-936300	[59]
$\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}$	aq	-1800200	[59]
$\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}$	aq	-575 600	[59]
$\left[\mathrm{Pb}(\mathrm{OH})_{6}\right]^{2-}$	aq	-989 430	Calculated ${ }^{\text {b }}$
PbH_{4}	g	270160	Calculated ${ }^{\text {c }}$
$\mathrm{H}_{2} \mathrm{O}$	1	-237 140	[59]
OH^{-}	aq	-157240	[59]

${ }^{a}$ Calculated from the value of the solubility product of $\mathrm{Pb}(\mathrm{OH})_{2}$ [67];
${ }^{b}$ Calculated from the standard electrode potential of the half-cell reaction $\left[\mathrm{Pb}(\mathrm{OH})_{6}\right]^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftarrows\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})[68]$;
${ }^{c}$ Calculated from the standard electrode potential of the half-cell reaction $\mathrm{Pb}(\mathrm{fcc})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftarrows \mathrm{PbH}_{4}(\mathrm{~g})$ [68];
${ }^{d}$ The value used in further calculations.

3. Question regarding $\mathbf{P b O}$ or $\mathbf{P b}(\mathbf{O H})_{2}$ precipitation

The question of whether oxide or hydroxide precipitates in alkaline environments is essential for the aqueous chemistry of any element. Lead (II) can form both the oxide $\mathrm{PbO}(\mathrm{s})$ and the hydroxide $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$. Formally, these compounds are linked according to the reaction:
$\mathrm{PbO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$
The standard Gibbs energy change of reaction (1), calculated using the data from Table 1 is $\Delta_{r} G_{298}^{0}(1)=$ $4780 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$ and its equilibrium constant equals $K_{(1)}=$ 0.145 , which indicates that the formation of $\mathrm{PbO}(\mathrm{s})$ is thermodynamically favored. Moreover, it was reported
[51, 69] that lead (II) hydroxide is not stable as solid phase, and lead basic carbonate $\left(\mathrm{PbCO}_{3} \cdot 2 \mathrm{~Pb}(\mathrm{OH})_{2}\right)$ or lead (II) oxide (PbO) are encountered in practice where lead hydroxide is expected. The studies of the anodic oxidation of lead in a sulphuric acid media also reveal the formation of lead oxide on the surface [70,71].

However, when constructing potential - pH diagrams, it is convenient to plot separate diagrams for both unhydrated and hydrated form of oxides, as Pourbaix did it [24]. Therefore, in this study both $\mathrm{PbO}(\mathrm{s})$ and $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ will be considered and separate diagrams will be plotted for each of these compounds.

Higher lead oxides do not have their corresponding hydrated forms.

4. Chemical equilibria concerning lead (II) hydroxocomplexes

The lead hydroxocation $[\mathrm{PbOH}]^{+}(\mathrm{aq})$ may be polymerized according to the equation:

$$
\begin{equation*}
4[\mathrm{PbOH}]^{+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

This implies that these two cations coexist in a solution in the some ratio, which depends on the total content of the lead species. The calculated equilibrium constant of reaction (2) has the value $K_{(2)}=280860$ $L^{3} \cdot \mathrm{~mol}^{-3}$. Let $a_{[P b]}=a_{[P b O H]^{+}(a q)}+4 \cdot a_{\left[P b_{4}(O H)_{4}\right]^{4+}(a q)}$ is the total content of these two ions. The following system of equations may be composed:

By varying $a_{[\mathrm{Pb}]}$ and solving the system (3) the speciation diagram for this equilibrium was plotted, see Figure $1 a$. Curves 1 and 2 show the dependencies of the "activity fractions" $\frac{a_{[P b O H]^{+}(a q)}}{a_{[P b O H]^{+}(a q)^{+4}}+a_{\left[P b_{4}(O H)_{4}\right]^{4+(a q)}}}$ and $\frac{4 \cdot a_{\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq})}}{\left.a_{[\mathrm{PbOH}]^{+}(\mathrm{aq})}+4 \cdot a_{[\mathrm{Pb}}^{4}(\mathrm{OH})_{4}\right]^{4+(a q)}} a_{[}$on $a_{[\mathrm{Pb}]}$, and curve 3 determines the ratio $\frac{a_{[P b O H]^{+}(a q)}}{a_{\left[P b_{4}(O H)_{4}\right]^{4+}(a q)}}$. According to the diagram, $[\mathrm{PbOH}]^{+}(\mathrm{aq})$ predominates in diluted solutions (if $a_{[\mathrm{Pb}]}<10^{-3} \mathrm{~mol} \cdot L^{-1}$), but upon increasing the total activity of lead the fraction of the polymerized species $\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq})$ rapidly grows.

Figure 1a. The speciation diagram of the lead (II) hydroxocations in a solution, for:

$$
\begin{gather*}
4[\mathrm{PbOH}]^{+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \\
\frac{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}}{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}+4 \cdot a_{\mathrm{Pb}_{4} \mathrm{OH}_{4}^{4+}(\mathrm{aq})}}=f\left(\log \left(a_{\mathrm{PbOH}^{+}(\mathrm{aq})}+4 \cdot a_{\mathrm{Pb}_{4} \mathrm{OH}_{4}^{++}(\mathrm{aq})}\right)\right) \tag{1}
\end{gather*} \text {, left ordinate axis; }
$$

Similarly, $\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq})$ may form a dimer according to the equation:

$$
\begin{equation*}
2\left[\mathrm{~Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq}) \tag{4}
\end{equation*}
$$

The equilibrium constant of reaction (4) has the value $K_{(4)}$ $=10700 \mathrm{~L} \cdot \mathrm{~mol}^{-1}$. Again, after denoting the total activity of these two ions by $a_{[P b]}=3 \cdot a_{\left[P b_{3}(O H)_{4}\right]^{2+}{ }_{(a q)}+6}$. $a_{\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(a q)}$, the following system of equations can be written:

$$
\left\{\begin{array}{l}
K_{(4)}=\frac{a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{+4}(\mathrm{aq})}}{a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{+}+(\mathrm{aq})}}=10700 \mathrm{~L} \cdot \mathrm{~mol}^{-1} ; \tag{5}\\
a_{\mathrm{PPbl}}=3 \cdot a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2}+(\mathrm{aq})}+6 \cdot a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+(\mathrm{aq})}} .
\end{array}\right.
$$

The speciation diagram for this equilibrium is presented in Figure $1 b$. Curves 4 and 5 show the dependencies of $\frac{3 \cdot a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}}{3 \cdot a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}} \mathrm{aqq}_{4}}+6 \cdot a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})} \quad$ and $\frac{6 \cdot a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})}}{3 \cdot a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+(a q)}}+6 \cdot a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})}}$ on $a_{[\mathrm{Pb}]}$, and curve 6 determines the ratio $\frac{a_{\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(a q)}}{a_{\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(a q)}}$. In very diluted solutions (if $a_{[P b]}<10^{-5} \mathrm{~mol} \cdot L^{-1}$) the cation $\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq})$ is thermodynamically more stable, but in concentrated solutions (if $a_{[P b]}>10^{-2}$ $\mathrm{mol} \cdot L^{-1}$) its dimer begins to predominate.

Figure 1b. The speciation diagram of the lead (II) hydroxocations in a solution, for:

$$
\begin{align*}
& 2\left[\mathrm{~Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq}) \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\log \frac{a_{\mathrm{Pb}_{3}\left(\mathrm{OH} 4^{4^{+}(\mathrm{aq})}\right.}}{a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4}(\mathrm{aq})}}=f\left(\log \left(3 \cdot a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}+6 \cdot a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})}\right)\right), \text { right ordinate axis. } \tag{6}
\end{equation*}
$$

The thermodynamic stability of the other lead (II) hydroxocomplexes depends on pH and the thermodynamic activities of ions in solution. This dependency is presented in Figure $2 a$ with consideration of lead oxide and in Figure $2 b$ with consideration of lead hydroxide. The lead cation exhibits the consecutive reactions with an increase of pH depending on the thermodynamic activities. There are the following cases:
a) if $\mathrm{PbO}(\mathrm{s})$ is considered as the solid $\mathrm{Pb}(\mathrm{II})$ compound:
$\log a_{[\mathrm{Pb}]}>-2.5: \quad \mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$,
$\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq})$, $\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq}) \rightarrow \mathrm{PbO}(\mathrm{s}) \rightarrow$
$\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.
$-2.5>\log a_{[\mathrm{Pb}]}>\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$,
-4.4: $\quad\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow \mathrm{PbO}(\mathrm{s}) \rightarrow$ $\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.
$\log a_{[\mathrm{Pb}]}<-4.4: \quad \mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$, $\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.
b) if $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ is considered as the solid $\mathrm{Pb}(\mathrm{II})$ compound:
$\log a_{[\mathrm{Pb}]}>-3.1: \quad \mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$, $\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq})$, $\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow$ $\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.
$-3.1>\log a_{[\mathrm{Pb}]}>\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$,
-3.6: $\quad\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow$ $\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.
$\log a_{[\mathrm{Pb}]}<-3.6: \quad \mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{PbOH}^{+}(\mathrm{aq})$,
$\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \rightarrow\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{-}(\mathrm{aq})$.

Figure 2a. The thermodynamic activity - pH diagram for lead (II) species in a solution considering lead oxide $\mathrm{PbO}(\mathrm{s})$.

Figure 2b. The thermodynamic activity - pH diagram for lead (II) species in a solution considering lead hydroxide $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$.

5. The potential - $\mathbf{p H}$ diagram

Figures 3 a-e show the revised potential -pH diagrams for lead at 298 K , atmospheric pressure of 1 bar and the various thermodynamic activities of ions in solution. Figures $3 a$ and $3 c$ present the diagrams with consideration of $\mathrm{PbO}(\mathrm{s})$ and, respectively, $a_{[\mathrm{Pb}]}=1 \mathrm{~mol} \cdot L^{-}$ ${ }^{1}$ and $a_{[\mathrm{Pb}]}=10^{-3} \mathrm{~mol} \cdot L^{-1}$. Figures $3 b$ and $3 d$ present the diagrams with consideration of $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ and,
respectively, $a_{[\mathrm{Pb}]}=1 \mathrm{~mol} \cdot L^{-1}$ and $a_{[\mathrm{Pb}]}=10^{-3} \mathrm{~mol} \cdot L^{-1}$. Figure $3 e$ shows the diagram at $a_{[\mathrm{Pb}]}=10^{-6} \mathrm{~mol} \cdot L^{-1}$. Table 2 presents the thermodynamic characteristics of the basic chemical and electrochemical equilibria in $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system. In comparison to the previously published diagrams, these ones take into account the formation of all solid lead oxides and a gaseous lead tetrahydride as well as the possible polymerization of lead (II) hydroxocations.

Figure 3as. The potential - pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $298 \mathrm{~K}, 1$ bar and $a_{[\mathrm{Pb}]}=1 \mathrm{~mol} \cdot L^{-1}$ with consideration of $\mathrm{PbO}(\mathrm{s})$.

Figure 3b. The potential -pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $298 \mathrm{~K}, 1$ bar and $a_{[\mathrm{Pb}]}=1 \mathrm{~mol} \cdot L^{-1}$ with consideration of $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$.

Figure 3c. The potential -pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $298 \mathrm{~K}, 1$ bar and $a_{[\mathrm{Pb}]}=10^{-3} \mathrm{~mol} \cdot L^{-1}$ with consideration of $\mathrm{PbO}(\mathrm{s})$.

Figure $3 \boldsymbol{d}$. The potential -pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $298 \mathrm{~K}, 1$ bar and $a_{[\mathrm{Pb}]}=10^{-3} \mathrm{~mol} \cdot L^{-1}$ with consideration of $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$.

Figure 3e. The potential -pH diagram for $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $298 \mathrm{~K}, 1$ bar and $a_{[\mathrm{Pb}]}=10^{-3} \mathrm{~mol} \cdot L^{-1}$.
Table 2. Basic chemical and electrochemical equilibria in $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at $25^{\circ} \mathrm{C}$ and 1 bar.

$\begin{array}{\|c\|} \hline \text { No. of line } \\ \text { in Fig. } 2 \\ \text { and } 3 \\ \hline \end{array}$	Electrode reaction	E, V (SHE) or pH of the solution
a	$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g}) ; P_{\mathrm{H}_{2}(\mathrm{~g})}=5 \cdot 10^{-7}$ bar	$\mathrm{E}=0.186-0.0591 \cdot \mathrm{pH}$
b	$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; P_{\mathrm{O}_{2}(\mathrm{~g})}=0.21 \mathrm{bar}$	$\mathrm{E}=1.219-0.0591 \cdot \mathrm{pH}$
1	$\left\{\begin{array}{c}\mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 4 \mathrm{~Pb}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}\right.$	$\mathrm{pH}=6.181+\log \frac{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}}{a_{\mathrm{Pb}^{2+}(\mathrm{aq})}}=4.819+0.25 \cdot \log \frac{a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})}}{a_{\mathrm{Pb}^{2+}(\mathrm{aq})}^{4}}$
2	$\left\{\begin{array}{l} \mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 3 \mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 6 \mathrm{PbOH}^{+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ 4 \mathrm{~Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 3 \mathrm{~Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ 2 \mathrm{~Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 3 \mathrm{~Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{pH}=4.809+\log \frac{a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}}{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}^{3}}=2.792+0.5 \cdot \log \frac{a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})}}{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}}= \\ & =8.897+0.25 \cdot \log \frac{a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{+4}(\mathrm{aq})}^{4}}{a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})}^{4}}=6.880+0.25 \cdot \log \frac{a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4}+(\mathrm{aq})}^{2}}{a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+(\mathrm{aq})}}} \end{aligned}$

$\begin{array}{c\|} \hline \text { No. of line } \\ \text { in Fig. } 2 \\ \text { and } 3 \\ \hline \end{array}$	Electrode reaction	E, V (SHE) or pH of the solution
3	$\left\{\begin{array}{l} 3 \mathrm{PbO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq}) ; \\ 6 \mathrm{PbO}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq}) \end{array}\right.$	$\mathrm{pH}=7.417-0.5 \cdot \log a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+} \text { (aq) }}=8.425-0.25 \cdot \log a_{\mathrm{Pb}_{6}\left(\mathrm{OH}_{8}^{4+}(\mathrm{aq})\right.}$
4	$\left\{\begin{aligned} \mathrm{PbO}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq}) & \Leftrightarrow \mathrm{PbOH}^{+}(\mathrm{aq}) \\ 4 \mathrm{PbO}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq}) & \Leftrightarrow \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq}) \end{aligned}\right.$	$\mathrm{pH}=6.547-\log a_{\mathrm{PbOH}^{+}{ }_{\text {(aq) }}}=7.910-0.25 \cdot \log a_{\mathrm{Pb}_{4}\left(\mathrm{OH}_{4}{ }^{+}{ }^{\text {(aq) }}\right.}$
5	$\left\{\begin{array}{c} \mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \end{array} \Leftrightarrow_{\mathrm{PbOH}^{+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;}^{4 \mathrm{~Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})} \Leftrightarrow \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4^{+}}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}),\right.$	$\mathrm{pH}=10.951+0.5 \cdot \log \frac{a_{\mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})}}{a_{\mathrm{PbOH}^{+}(\mathrm{aq})}}=11.633+0.125 \cdot \log \frac{a_{\mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})}^{4}}{a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{+}{ }^{+}(\mathrm{aq})}}$
6	$\mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{PbO}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{pH}=15.355+\log a_{\mathrm{Pb}(\mathrm{OH})_{5}^{(a q)}}$
7	$\left\{\begin{array}{l}3 \mathrm{~Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ 6 \mathrm{~Pb}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}\right.$	$\mathrm{pH}=8.673-0.5 \cdot \log a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}=9.682-0.25 \cdot \log a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})}$
8	$\left\{\begin{array}{c} \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ 4 \mathrm{~Pb}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{+4}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\mathrm{pH}=7.385-\log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}=8.748-0.25 \cdot \log a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})}$
9	$\mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{pH}=14.518+\log a_{\mathrm{Pb} \text { (OH) }}^{-(\text {aq) }}$
10	$\mathrm{Pb}(\mathrm{fcc})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \Leftrightarrow \mathrm{PbH}_{4}(\mathrm{~g}) ; \quad P_{\mathrm{PbH}_{4}(\mathrm{~g})}=1 \mathrm{bar}$	$\mathrm{E}=-0.700-0.0591 \cdot \mathrm{pH}$
11	$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{fcc})$	$\mathrm{E}=-0.127+0.0295 \cdot \log a_{\mathrm{Pb}^{2+}(\mathrm{aq})}$
12	$\left\{\begin{array}{c} \mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{fcc})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+8 \mathrm{e}^{-} \Leftrightarrow 4 \mathrm{~Pb}(\mathrm{fcc})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=0.056-0.0295 \cdot \mathrm{pH}+0.0295 \cdot \log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}= \\ & =0.016-0.0295 \cdot \mathrm{pH}+0.0074 \cdot \log a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{+(\mathrm{aq})}} \end{aligned}$
13	$\left\{\begin{array}{l} \mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}(\mathrm{fcc})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ \mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+12 \mathrm{e}^{-} \Leftrightarrow 6 \mathrm{~Pb}(\mathrm{fcc})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=0.104-0.0394 \cdot \mathrm{pH}+0.00985 \cdot \log a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}= \\ & =0.084-0.0394 \cdot \mathrm{pH}+0.00493 \cdot \log a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4}(\mathrm{aq})} \end{aligned}$
14	$\mathrm{PbO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{fcc})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=0.250-0.0591 \cdot \mathrm{pH}$
15	$\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{fcc})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=0.275-0.0591 \cdot \mathrm{pH}$
16	$\mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{fcc})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=0.704-0.0887 \cdot \mathrm{pH}+0.0295 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{3}(\mathrm{aq})}$
17	$\left\{\begin{array}{c} \mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+5 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ 4 \mathrm{~Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+20 \mathrm{H}^{+}(\mathrm{aq})+8 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.558-0.1478 \cdot \mathrm{pH}-0.0887 \cdot \log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}= \\ & =1.679-0.1478 \cdot \mathrm{pH}-0.0111 \cdot \log a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+(\mathrm{aq})}} \end{aligned}$
18	$\left\{\begin{array}{l} \mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq}) ; \\ 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.416-0.1182 \cdot \mathrm{pH}-0.0295 \cdot \log a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})}= \\ & =1.476-0.1182 \cdot \mathrm{pH}-0.0143 \cdot \log a_{\mathrm{Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})} \end{aligned}$
19	$\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{PbO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=0.978-0.0591 \cdot \mathrm{pH}$
20	$\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}(\mathrm{OH})_{2}(\mathrm{~s})$	$\mathrm{E}=0.903-0.0591 \cdot \mathrm{pH}$
21	$\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$	$\mathrm{E}=-0.385+0.0295 \cdot \mathrm{pH}-0.0887 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{5}^{-} \text {(aq) }}$
22	$\left\{\begin{array}{c} \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+22 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \Leftrightarrow 12 \mathrm{PbOH}^{+}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+22 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.443-0.1300 \cdot \mathrm{pH}-0.0709 \cdot \log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}= \\ & =1.540-0.1300 \cdot \mathrm{pH}-0.0177 \cdot \log a_{\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+} \text { (aq) }} \end{aligned}$
23	$\left\{\begin{array}{l} \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+18 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \Leftrightarrow 4 \mathrm{~Pb}_{3}(\mathrm{OH})_{4}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+18 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \Leftrightarrow 2 \mathrm{~Pb}_{6}(\mathrm{OH})_{8}^{4+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.330-0.1064 \cdot \mathrm{pH}-0.0236 \cdot \log a_{\mathrm{Pb}_{3}\left(\mathrm{OH} 4_{4}^{2+}(\mathrm{aq})\right.}= \\ & =1.377-0.1064 \cdot \mathrm{pH}-0.0118 \cdot \log a_{\mathrm{Pb}_{3}(\mathrm{OH})_{4}^{2^{+}(\mathrm{aq})}} \end{aligned}$
24	$\mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow 4 \mathrm{~Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=0.983-0.0591 \cdot \mathrm{pH}$
25	$\mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+19 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+10 \mathrm{e}^{-} \Leftrightarrow 12 \mathrm{~Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$	$\mathrm{E}=-0.111+0.0118 \cdot \mathrm{pH}-0.0709 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{5}^{(\mathrm{aq})}}$
26	$\left\{\begin{array}{c} \mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})+26 \mathrm{H}^{+}(\mathrm{aq})+14 \mathrm{e}^{-} \Leftrightarrow 12 \mathrm{PbOH}^{+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ \mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})+26 \mathrm{H}^{+}(\mathrm{aq})+14 \mathrm{e}^{-} \Leftrightarrow 3 \mathrm{~Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.348-0.1098 \cdot \mathrm{pH}-0.0507 \cdot \log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}= \\ & =1.418-0.1098 \cdot \mathrm{pH}-0.0129 \cdot \log a_{\mathrm{Pb}_{4}\left(\mathrm{OH}_{4}^{4+}\right. \text { (aq) }} \end{aligned}$
27	$\mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}_{12} \mathrm{O}_{17}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$ (1)	$\mathrm{E}=1.111-0.0591 \cdot \mathrm{pH}$
28	$\mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})+17 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{H}^{+}(\mathrm{aq})+14 \mathrm{e}^{-} \Leftrightarrow 12 \mathrm{~Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})$	$\mathrm{E}=0.238-0.0084 \cdot \mathrm{pH}-0.0507 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{3}(\mathrm{aq})}$
29	$\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (1)	$\mathrm{E}=1.449-0.1182 \cdot \mathrm{pH}-0.0295 \cdot \log a_{\mathrm{Pb}^{2+}(\mathrm{aq})}$
30	$\left\{\begin{array}{c} \mathrm{PbO}_{2}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{PbOH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \\ 4 \mathrm{PbO}_{2}(\mathrm{~s})+12 \mathrm{H}^{+}(\mathrm{aq})+8 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}_{4}(\mathrm{OH})_{4}^{4+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{array}\right.$	$\begin{aligned} & \mathrm{E}=1.267-0.0887 \cdot \mathrm{pH}-0.0295 \cdot \log a_{\mathrm{PbOH}^{+}(\mathrm{aq})}= \\ & =1.307-0.0887 \cdot \mathrm{pH}-0.0074 \cdot \log a_{\left.\mathrm{Pb}_{4}(\mathrm{OH})_{4}^{+(~} \mathrm{aq}\right)} \end{aligned}$
31	PbO_{2} (s) $+10 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}_{12} \mathrm{O}_{19}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}$ (1)	$\mathrm{E}=1.152-0.0591 \cdot \mathrm{pH}$
32	$\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})$	$\mathrm{E}=0.619-0.0295 \cdot \mathrm{pH}-0.0295 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{\overline{3}}(\mathrm{aq})}$
33	$\mathrm{Pb}(\mathrm{OH})_{6}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow \mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{pH}=15.609+0.5 \cdot \log a_{\mathrm{Pb}(\mathrm{OH})_{6}^{2-} \text { (aq) }}$

No. of line in Fig. 2 and 3	Electrode reaction	E, V (SHE) or pH of the solution
34	$\mathrm{~Pb}(\mathrm{OH})_{6}^{2-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Pb}(\mathrm{OH})_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{E}=1.365-0.0887 \cdot \mathrm{pH}+0.0295 \cdot \log \frac{a_{\mathrm{Pb}(\mathrm{OH})_{6}^{2-}}^{a_{\mathrm{Pb}(\mathrm{OH})}}{ }_{3}(\mathrm{aq})}{}$

The dashed lines a and b in the diagram border the domain of electrochemical stability of water, which is the most interesting for studies of the corrosionelectrochemical behavior of lead. As can be seen, the stability domains of solid phases become narrower with decreasing of lead species thermodynamic activities. They vanish completely for very diluted solutions, so the diagram of lead has at all no domain of passivity.

4. Conclusions

The chemical equilibria between various forms of Pb (II) in were considered. The speciation diagrams for the equilibria $4[\mathrm{PbOH}]^{+}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq}) \quad$ and $2\left[\mathrm{~Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq}) \rightleftarrows 2\left[\mathrm{~Pb}_{6}(\mathrm{OH})_{8}\right]^{2+}(\mathrm{aq})$ were plotted. It was shown that the species $\left[\mathrm{Pb}_{4}(\mathrm{OH})_{4}\right]^{4+}(\mathrm{aq})$ and $\left[\mathrm{Pb}_{6}(\mathrm{OH})_{8}\right]^{4+}(\mathrm{aq})$ predominate in concentrated solutions, whereas the species $[\mathrm{PbOH}]^{+}(\mathrm{aq})$ and $\left[\mathrm{Pb}_{3}(\mathrm{OH})_{4}\right]^{2+}(\mathrm{aq})$ predominate in diluted solutions.

The thermodynamic activity - pH diagrams of Pb (II) species were plotted. The hydrolysis of Pb (II) species with alteration of pH in presence of $\mathrm{PbO}(\mathrm{s})$ and $\mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$ was discussed.

Basic chemical and electrochemical equilibria for lead were calculated. The potential -pH diagrams for Pb $-\mathrm{H}_{2} \mathrm{O}$ system at $25^{\circ} \mathrm{C}$, atmospheric pressure of 1 bar and various activities of lead species in an aqueous solution were revised. The new diagrams take into account all possible lead oxides, a gaseous lead hydride and a polymerization of lead species in an aqueous media.

Conflict of interest

The author declares no conflict of interest regarding to the publication of this article.

References

[1]. L. Kiss, Kinetics of Electrochemical Metal Dissolution, Akademiai Kiado, Budapest (1988).
[2]. W.T. Thompson, M.H. Kaye, C.W. Bale, A.D. Pelton, Pourbaix Diagrams for Multielement Systems, in Uhlig's Corrosion Handbook, Wiley, New York 2011, pp. 103-110.
[3]. P. Delahay, M. Pourbaix, P. van Rysselberghe, Potential - pH Diagram of Lead and its Applications to the Study of Lead Corrosion and to the Lead Storage Battery, Journal of the Electrochemical Society 98 (1951) 57-64.
[4]. R.J. Thibeau, C.W. Brown, A.Z. Goldfarb, R.H. Heidersbach, Infrared and Raman Spectroscopy of Aqueous Corrosion Films on Lead, Journal of the Electrochemical Society 127 (1980) 37-44.
[5]. R.J. Thibeau, C.W. Brown, A.Z. Goldfarb, R.H. Heidersbach, Raman and Infrared Spectroscopy of Aqueous Corrosion Films on Lead in 0.1M Sulfate Solutions, Journal of the Electrochemical Society 127 (1980) 1913-1918.
[6]. M. Toedtemeir, B. Dandapani, E. Ghali, La Corrosion Et Le Diagramme E-pH De Sulfure De Plomb [Corrosion and $\mathrm{E}-\mathrm{pH}$ diagram for lead sulphide], Canadian Metallurgical Quarterly 31 (1992) 95-104 (In French).
[7]. E. Rocca, J. Steinmetz, Inhibition of lead corrosion with saturated linear aliphatic chain monocarboxylates of sodium, Corrosion Science 43 (2001) 891-902.
[8]. E.S. Reid, R.P. Cooney, P.J. Hendra, M.A. Fleischmann, Raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 80 (1977) 405-408.
[9]. G. Deschênes, E. Ghali, L'électrodissolution d'une poudre de galène en milieu d'acétate d'ammonium et d'acide chlorhydrique [The electrodissolution of a powder of galena in the media of ammonium acetate and hydrochloric acid], Journal of Applied Electrochemistry 18 (1988) 304-311 (In French).
[10]. M. Tunnicliffe, F. Mohammadi, A. Alfantazi, Polarization Behavior of Lead-Silver Anodes in Zinc Electrowinning Electrolytes, Journal of The Electrochemical Society 159 (2012) C170-C180.
[11]. E. Rudnik, P. Biskup, Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions, Archives of Metallurgy and Materials 60 (2015) 95-100.
[12]. P. Ness, Gegenwärtiger Stand der Forschungsarbeiten an positiven Elektroden in Bleiakkumulatoren [Current standing of the research work on positive electrodes in lead storage batteries], Electrochimica Acta 12 (1967) 161 - 178 (In German).
[13]. J. Garche, Passivation of the positive electrode of the lead/acid battery: a consequence of selfdischarge, Journal of Power Science 30 (1990) 4754.
[14]. R.D. Prengaman, New low-antimony alloy for straps and cycling service in lead-acid batteries, Journal of Power Sources 158 (2006) 1110-1116.
[15]. D. Pavlov, Lead-Acid Batteries: Science and Technology. Chapter 2 - Fundamentals of LeadAcid Batteries, Elsevier, Amsterdam 2011, pp. 29114.
[16]. H. Majima, How oxidation affects selective flotation of complex sulphide ores, Canadian Metallurgical Quarterly 8 (1969) 269-273.
[17]. D. Hem, J. Durum, Solubility and occurrence of lead in surface water, Journal (American Water Works Association) 65 (1973) 562-568.
[18]. E. Peters, Direct leaching of sulfides: chemistry and applications, Metallurgical Transactions B 7 (1976) 505-517.
[19]. V.V. Robozerov, V.A. Zykov, T.A. Gavrikova, Chemical etching of lead chalcogenides, Inorganic Materials 36 (2000) 177-181.
[20]. E. Espinoza, R. Escudero, F.J. Tavera, Waste Water Treatment by Precipitating Copper, Lead and Nickel Species, Research Journal of Recent Sciences 1 (2012) 1-6.
[21]. E. Espinoza, R. Escudero, F.J. Tavera, Precipitation of Lead Species in a $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ System, Research Journal of Recent Sciences 2 (2013) 1-4.
[22]. M. Sato, Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies, Geochimica et Cosmochimica Acta 56 (1992) 3133-3156.
[23]. G. Lisak, T. Sokalski, J. Bobacka, L. Harju, A. Lewenstam, A study on lowering the detection limit with solid-state lead-selective electrodes, Talanta 83 (2010) 436-440.
[24]. C. Hongyu, $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$ tǐxì diànwè̀i- pH tú de zuòyòng [The potential -pH Diagram of $\mathrm{Pb}-$ $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}$ system], Xùdiànchí 4 (1995) 22-26 (In Chinese).
[25]. M. Pourbaix, J. van Myulder, N. de Zoubov, Atlas d'équilibres électrochimiques à $25^{\circ} \mathrm{C}$ [Atlas of the electrochemical equilibria at $25^{\circ} \mathrm{C}$, Centre belge d'étude de la corrosion, Bruxelles (1963) (In French).
[26]. D.G. Brookins, Eh-pH diagrams for elements from $Z=40$ to $Z=52$: Application to the Oklo natural reactor, Gabon, Chemical Geology 23 (1978) 325-342.
[27]. D.G. Brookins, Application of Eh-pH diagrams to problems of retention and/or migration of fissiogenic elements at Oklo, International Atomic Energy Agency, Technical committee meeting on natural fission reactors, Vienna (1979) 243-263.
[28]. D.G. Brookins, Eh-pH Diagrams for Geochemistry, Springer, Berlin (1987).
[29]. Atlas of Eh-pH Diagrams: Intercomparison of thermodynamic databases, Open file report № 419, National Institute of Advanced Industrial Science and Technology, Tokyo (2005), URL: http://www.eosremediation.com/download/Chemis try/Chemical\%20Properties/Eh_pH_Diagrams.pdf (Accessed Juni 2018).
[30]. G.K. Schweitzer, L.L. Pesterfield, The Aqueous Chemistry of the Elements, Oxford University Press, Oxford (2010).
[31]. H. Wàngyín, S. Shìhuá, R. Húmǐn R, Bùtóng nóngdù $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ tǐxì de róngjiě zǔ fèn yōushì qūyù tú hé Pourbaix tú [Predominance diagram and Pourbaix diagram of dissolved species of $\mathrm{Pb}-\mathrm{H}_{2} \mathrm{O}$ system at different concentrations], Wújī Yán Gōngyè 47 (2015) 20-23 (In Chinese).
[32]. H.A. Wriedt, The $\mathrm{O}-\mathrm{Pb}$ (Oxygen - Lead) System, Bulletin of Alloy Phase Diagrams 9 (1988) 106127.
[33]. Diagrammy Sostoâniâ Dvojnyh Metalličeskih Sistem [Phase Diagrams of Binary Metallic Systems], Vol. 3, Book 1, ed. N. P. Lyakishev, Mašinostroenie, Moskva (2001) (In Russian).
[34]. Pb - O, FSlead Database, FactSage - Web, URL: http://www.crct.polymtl.ca/fact/phase_diagram.ph p ?file $=\mathrm{Pb}-\mathrm{O} . j p g \& d i r=F S l e a d \quad$ (Accessed June 2018).
[35]. M. Cao, C. Hu, G. Peng, Y. Qi, E. Wang, SelectedControl Synthesis of PbO_{2} and $\mathrm{Pb}_{3} \mathrm{O}_{4}$ SingleCrystalline Nanorods, Journal of the American Chemical Society 125 (2003) 4982-4983.
[36]. S.T. Gross, The Crystal Structure of $\mathrm{Pb}_{3} \mathrm{O}_{4}$, Journal of the American Chemical Society 65 (1943) 11071110.
[37]. C. Barriga, S. Maffi, L.P. Bicelli, C. Malitesta, Electrochemical lithiation of $\mathrm{Pb}_{3} \mathrm{O}_{4}$, Journal of Power Sources 34 (1991) 353-367.
[38]. S. Kumar, M. Sharon, S.R. Jawalekar, Preparation of a thin film of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ by thermal treatment of PbO_{2} film, Thin Solid Films 195 (1991) 273-278.
[39]. J.R. Gavarri, D. Weigel, Oxydes de plomb. I. Structure cristalline du minium $\mathrm{Pb}_{3} \mathrm{O}_{4}$, à température ambiante (293 K) [Lead oxides. I. Crystalline structure of minium $\mathrm{Pb}_{3} \mathrm{O}_{4}$, at ambient temperature (293 K)], Journal of Solid State Chemistry 13 (1975) 252-257 (In French).
[40]. C. Mallika, O.M. Sreedharan, Gibbs energy data on $\mathrm{Pb}_{3} \mathrm{O}_{4}$ from EMF measurements, Materials Letters 22 (1995) 5-9.
[41]. A.G. Morachevskii, Z.I. Vaisgant, V.L. Ugolkov, M.N. Khabachev, E.V. Bochagina, O.A. Kal'ko, Yu. S. Kuznetsova, Reduction in processing of active paste from lead battery scrap, Russian Journal of Applied Chemistry 79 (2006) 241-249.
[42]. M. Čančarevic, M. Zinkevich, F. Aldinger, Thermodynamic assessment of the ternary $\mathrm{Cu}-\mathrm{Pb}-$ O system, Zeitschrift für Metallkunde: International Journal of Materials Research 96 (2005) 879-887.
[43]. W.B. White, R. Roy, Phase Relations in the System Lead-Oxygen, Journal of the American Ceramic Society 47 (1964) 242-249.
[44]. K. Gavrichev, A. Bolshakov, D. Kondakov, A. Khoroshilov, S. Denisov, Thermal transformations of lead oxides, Journal of Thermal Analysis and Calorimetry 92 (2008) 857-863.
[45]. S.A. Lyamkin, Initial stages of the formation of lead oxide phases, Russian Metallurgy (Metally) 3 (2009) 197-200.
[46]. W.B. White, F. Dachille, R. Roy, High Pressure High Temperature Polymorphism of the Oxides of Lead, Journal of the American Ceramic Society 44 (1961) 170-174.
[47]. A. Ferrari, Il subossido di plombo [The suboxide of lead], Gazetta Chimica Italiana 56 (1926) $630-637$ (In Italian).
[48]. M. Le Blanc, E. Eberius, Untersuchungen von Bleioxyde und ihrer Systeme mit Sauerstoff [Investigation of Lead Oxides and their Systems with Oxygen], Zeitschrift für Physikalische Chemie 160 (1932) 69-100 (In German).
[49]. T. Katz, Contribution à l'étude du système de plomb-oxygène [Contribution to the Study of the Lead - Oxygen System], Annales de Chimie. Douzième série 5 (1950) 5-65 (In French).
[50]. G.L. Clark, N.C. Schieltz, T.T. Quirke, A New Study of the Preparation and Properties of the

Higher Oxides of Lead, Journal of the American Chemical Society 59 (1937) 2305-2308.
[51]. G.L. Clark, W.P. Tyler, Studies on Lead Oxides. II. Hydrous, Normal and Active Lead Monoxides, Journal of the American Chemical Society 61 (1939) 58-65.
[52]. G.L. Clark, R. Rowan, Studies on Lead Oxides. IV. Polymorphic Transitions by Grinding, Distortion and Catalytic Activity in PbO , Journal of the American Chemical Society 63 (1941) 1302-1305.
[53]. G.L. Clark, R. Rowan, Studies on Lead Oxides. V. Further Experiments on Compounds of the Type $\mathrm{PbO}_{\mathrm{n}(\mathrm{n}=1}$ to 2), Journal of the American Chemical Society 63 (1941) 1305-1310.
[54]. E.M. Otto, Equilibrium Pressures of Oxygen over Oxides of Lead at Various Temperatures, Journal of the Electrochemical Society 113 (1966) 525-527.
[55]. H. G. Howell, The spectra of tin and lead hydrides, Proceedings of the Physical Society 57 (1945) 3744.
[56]. E. Wiberg, E. Amberger, Die Hydriden der Elemente der Hauptgruppen I-IV [Hydrides of the Elements of Main Groups I-IV], Elsevier, Amsterdam (1971) (In German).
[57]. X. Wang, L. Andrews, Infrared Spectra of Group 14 Hydrides in Solid Hydrogen: Experimental Observation of $\mathrm{PbH}_{4}, \mathrm{~Pb}_{2} \mathrm{H}_{2}$, and $\mathrm{Pb}_{2} \mathrm{H}_{4}$, Journal of the American Chemical Society 126 (2003) 65816587.
[58]. C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations, Wiley, New Jersey (1976).
[59]. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I.B. Halow, M. Sylvia, K.L. Churney, R.L. Nuttal, The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C_{1} and C_{2} organic substances in SI units, Journal of Physical and Chemical Reference Data 11 (1982) Supplement 2.
[60]. K. Sono, M. Hagiwara, Raman Spectra of Hydroxo Complexes of Tin (II) and Lead (II) in Strongly Alkaline Solutions, and of Antimony (III) Fluoride in Various Solvents, Natural Science Report of the Ochanomizu University 28 (1977) 67-70.
[61]. M. Breza, A. Manová, On the Reliability of the Structures of Lead (II) Hydroxo Complexes

Obtained by MNDO Method, Collection of Czechoslovak Chemical Communications 64 (1999) 1269-1273.
[62]. R.C. Ropp, Encyclopedia of the Alkaline Earth Compounds, 1st edition, Elsevier, Amsterdam (2013).
[63]. A. Becht, A. Vogler, Photoredox reactions of lead (IV) and -(II) hydroxo complexes, Inorganic Chemistry 32 (1993) 2835-2837.
[64]. L.B. Pankratz, J.M. Stuve, M.A. Gokcen, Thermodynamic Data for Mineral Technology, United States Bureau of Mines, Washington (1984).
[65]. M.W. Chase Jr, C.A. Davies, J.R. Downey Jr, D.J. Frurip, R.A. McDonald, A.N. Syverud, JANAF NIST Thermochemical Tables. 4th Edition, Journal of Physical and Chemical Reference Data (1998) Monograph 9.
[66]. D. Risold, J.L. Nagata, R.O. Suzuki, Thermodynamic description of the $\mathrm{Pb}-\mathrm{O}$ system, Journal of Phase Equilibria 19 (1998) 213-233.
[67]. J. Speight, Lange's Handbook of Chemistry, 16th edition, McGraw-Hill Education, New York (2005).
[68]. S.G. Bratsch, Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K , Journal of the Physical and Chemical Reference Data 18 (1989) 1-21.
[69]. G. Todd, E. Parry, Character of Lead Hydroxide and Basic Lead Carbonate, Nature 202 (1964) 386-387.
[70]. D. Pavlov, Mechanism of the Anodic Oxidation of Lead in Sulphuric Acid Solutions, Berichte der Bunsengesellschaft für physikalische Chemie 71 (1967) 398-404.
[71]. D. Pavlov, Processes of formation of divalent lead oxide compounds on anodic oxidation of lead in sulphuric acid, Electrochimica Acta 13 (1969) 2051-2061.

Received: 15.06.2018
Received in revised form: 23.07.2018
Accepted: 24.07.2018

[^0]: * E-mail address: npa@csu.ru

