

Ovidius University Annals of Chemistry

Antidiabetic, antioxidant and *in silico* studies of bacterial endosymbiont inhabiting *Nephelium lappaceum* L.

Sridevi CHIGURUPATI^{*},¹ Shantini VIJAYABALAN,² Arunkumar KARUNANIDHI,³ Kesavanarayanan KRISHNAN SELVARAJAN,⁴ Sitansu Sekhar NANDA[†],⁵ and Raghunath SATPATHY⁶

¹Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Kingdom of Saudi Arabia

²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Kedah, Malaysia

³Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia

⁴Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi

Arabia

⁵Department of Chemistry, Myongji University, Yongin, South Korea ⁶Department of Biotechnology, MITS Engineering College, Rayagada, Odisha-765017, India

Abstract. Endophytes, notably obtaining attention, have been abided by potential origins of bioactive metabolites. In the acquaint study, endophyte was isolated from the leaves of *Nephelium lappaceum* L. The chosen endosymbiont was identified by 16s rRNA partial genome sequencing and investigated for their antioxidant and antidiabetic activities. A preliminary phytochemical test was comported for the affirmation of phytoconstituents in endophytic crude extract (NLM). Antioxidant activities were conducted by using 2-diphenyl-1-picrylhydrazyl (DPPH) method and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) method to screen the radical scavenging potential. The evaluation of antidiabetic activities was done by using α -amylase and α -glucosidase inhibition assay. Qualitative phytochemical test on NLM affirmed the presence of phenols, carbohydrates, alkaloids, flavonoids, steroids, mucilage and glycosides. *In silico* parameters were also specified for antidiabetic activities. The antioxidant assay of NLM expressed proficient antioxidant activity of IC₅₀±SEM 1.35±0.03 µg/mL and IC₅₀±SEM 1.47±0.03 µg/mL, for ABTS and DPPH respectively. Antidiabetic assay results evidenced dose dependent percentage inhibition of the enzyme. The results testified estimable inhibition of α -amylase (IC₅₀±SEM 2.549±0.08 µg/mL) and α -glucosidase inhibition (IC₅₀±SEM 2.29±0.03µg/mL) compared to the standard drug (Acarbose). *In silico* study divulged that the ellagic acid component present in the plant was responsible for antidiabetic activity. Thus, the study shows that NLM has a wellspring of natural source of antioxidants and antidiabetic actividants and antidiabetic actividants and furtherance of studies on its mechanism is recommended to know detailed facts.

Keywords: Nephelium lappaceum, antioxidant, α-amylase, α-glucosidase, endophyte, Escherichia coli.

^{*} Corresponding author. *E-mail address:* sridevi.phd@gmail.com (Sridevi Chigurupati).

[†] Corresponding author. *E-mail address:* nandasitansusekhar@gmail.com (Sitansu Sekhar Nanda).