

Synthesis and characterization of poly(ε-caprolactone) tetra-arm star polymer using tetra terminal alkynyl-substituted phthalocyanine by the combination of ring-opening polymerization and "click" chemistry

Bedrettin SAVAŞ,¹ Ergül MEYVACI,² Temel ÖZTÜRK^{*},² and Mehmet Salih AĞIRTAŞ³

¹Kafkas University, Kars Vocational School, 36100 Kars, Turkey ²Giresun University, Faculty of Arts and Sciences, Department of Chemistry, 28200 Giresun, Turkey ³Van Yüzüncü Yıl University, Faculty of Sciences, Department of Chemistry, 65100 Van, Turkey

Abstract. The synthesis of $poly(\varepsilon$ -caprolactone) (PCL) tetra-arm star polymer was carried out using "click" chemistry and ring-opening polymerization techniques. For this purpose, $poly(\varepsilon$ -caprolactone) azido (PCL-N₃) was acquired using ring-opening polymerization of ε -caprolactone and 2-[2-(2-azidoethoxy)ethoxy]ethanol (N₃ol). N₃ol was obtained using sodium azide and 2-[2-(2-chloroethoxy)ethoxy]ethanol. 4-(prop-2-ynyloxy)-phthalonitrile was obtained by using 4nitrophthalonitrile and propargyl alcohol. 2(3),9(10),16(17),23(24) Tetrakis-[(prop-2-ynyloxy)-phthalocyaninato]zinc(II) (Pc-propargyl) was synthesized by using 4-(prop-2-ynyloxy)-phthalonitrile and a metal salt. By reacting Pc-propargyl and PCL-N₃, PCL tetra-arm star polymer was obtained by "click" chemistry. The products were characterized via scanning electron microscopy, ¹H-nuclear magnetic resonance spectroscopy, ultraviolet-visible spectrophotometry, Fouriertransform infrared spectroscopy, and gel permeation chromatography instruments. The spectroscopic analyses of PCL tetra-arm star polymer prove that the star polymer was built through the combination of ROP and "click" chemistry. We provided a protocol for PCL tetra-arm star polymer, and a statement of reproducibility with respect to the properties of this tetra-arm star polymer. This study is an example of a novel type of combination reaction, from ring-opening polymerization to "click" chemistry using phthalocyanine. This can open the door for diverse tetra-arm star polymer synthesis that could potentially cause major advances in synthetic macromolecular chemistry.

Keywords: tetra-arm star polymer; "click" chemistry; ring-opening polymerization; phthalonitrile derivative; metallophthalocyanine.

^{*}Corresponding author: to *E-mail address*: temel.ozturk@giresun.edu.tr (Temel Öztürk)