

Ovidius University Annals of Chemistry

Volume 33, Number 2, pp. 99 - 103, 2022

Temperature dependence studies and microscopic protonation constants of Lalanine and β-alanine in acetonitrile – water mixtures

Hande ERENSOY^{*},^{1,2} Dilek Bilgic ALKAYA,³ and Serap Ayaz SEYHAN³

¹Institute of Health Sciences, Marmara University, Istanbul, Turkey ²Faculty of Pharmacy, Istanbul Yeni Yuzyil University, Istanbul, Turkey ³Faculty of Pharmacy, Marmara University, Istanbul, Turkey

Abstract. L-alanine and β -alanine are important biological molecules and have zwitterion structure. In this study, Lalanine and β -alanine's microscopic protonation constants and thermodynamic parameters (enthalpy, entropy, and free energy changes) for the proton–ligand systems of L-alanine methyl ester, β -alanine and β -alanine methyl ester have been determined at 5; 20; 35 °C, in ACN-water (25% ACN and 50% ACN (v/v)) mixtures at constant ionic strength of 0.1000 mol L⁻¹ NaClO₄ by potentiometric method. The results shown that, L-alanine and β -alanine's microscopic protonation constants generally tend to decrease with temperature rise and their protonation reactions in ACN-water mixtures generally favor enthalpy-driven.

Keywords: L-alanine, β-alanine; microscopic protonation constants; thermodynamics parameters.

^{*} Corresponding author. *E-mail address*: hande.erensoy@yeniyuzyil.edu.tr (Hande Erensoy)