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Abstract. Ten new chalcones of 8-quinoline were efficiently synthesized via a solvent-free cross-aldol condensation 

between 8-quinoline carbaldehyde and various substituted aryl ketones, catalyzed by nano fly-ash:H₃PO₄ under 

microwave irradiation. This method afforded over 82 % yield efficiency. The resulting 8-quinoline enones were 

characterized through their physicochemical properties, analytical, and spectroscopic techniques. The role of the catalyst 

and solvents in the reaction was examined, revealing the optimal catalyst amount to be 0.25 g for 0.01 mol of aldehydes. 

Additionally, the in vitro antimalarial activity of the synthetic compounds against the intra-erythrocytic development of 

Plasmodium falciparum was evaluated. The halo-substituted 8-quinoline enones were extremely dynamic in contraction 

with the antimalarial microbes among the other enones. 
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1. Introduction 

Quinoline chalcones belong to , -unsaturated ketones. 

They play a significant role in medicinal 

pharmaceutical, synthetic organic, and natural product 

chemistry due to the presence of various biological 

activities and key intermediates [1-4]. Chalcones are a 

unique main kind of natural product with extensive 

dispersal in spices, vegetables, fruits, tea, and soy-based 

food products that possess pharmacological activities [5, 

6]. The condensation of aryl ketones with aldehydes is 

significant, and crossed-aldol condensation is an 

efficient method for their synthesis. However, 

conventional acid-base catalyzed reactions are often 

affected by competing reverse processes [7]. Several 

catalysts, like Lewis’s acids and bases [8, 9], metal 

oxides [10], bentonite [11], metal tungstates [12], fly-

ash-based catalysts [13], phosphates [14], silica [15], 

and nanoparticles [16], were utilized for deriving aryl 

enones through the condensation of aryl carbonyl 

substrates under conventional heating or greener 

methods. Spectral analysis plays a key role in predicting 

the ground state equilibrium of α, β–unsaturated ketones 

[17, 18]. The E or Z configuration of the chalcones was 

determined based on the orientation of protons within 
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the alkene segment and confirmed by the coupling 

constant ‘J’ values observed in their ¹H-NMR spectra 

[19]. Chalcones, on the other hand, hold a pivotal role in 

organic synthesis, serving as precursors to an array of 

synthetic heterocyclic compounds like isoxazoles [20], 

pyrazolines [21], pyrimidines [22], and thiazoles [23]. 

Enone derivatives exhibit a wide spectrum of bio-

activities, such as antimicrobial [1], anti-inflammatory 

[24], antimalarial [25], anticancer [26], antileishmanial 

[27], antiplasmodial [28], and antimalarial [29]. Within 

these activities, the enones play a significant role in 

biological chemistry research [20-29]. All notorious 

quinoline substrate drugs possess the side chain in 4 or 

8 carbons and they involve the synthesis of many 

quinoline derivatives. However, recently, it has been 

described that affecting a functionalized side chain 

around the quinolone core to the other position causes 

the retention of biological activity and provides new 

opportunities for the design of bioactive compounds 

[30]. Malaria is mainly caused by the Plasmodium 

falciparum. As per the WHO report, approximately 156 

classes of plasmodium have been availed in the 

biological field. There are 5 Plasmodium parasite 

species that cause malaria in humans, and two of these 

species – P. falciparum and P. vivax – pose the greatest 
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threat. P. falciparum is the deadliest malaria parasite and 

the most prevalent on the African continent. P. vivax is 

the dominant malaria parasite in most countries outside 

of sub-Saharan Africa. The other malaria species that 

can infect humans are P. malariae, P. ovale, and P. 

knowlesi [31]. Chemists and researchers were attracted 

by the simple structured, cheapest synthetic 

methodology for the synthesis of potent, anti-malarial  

chalcones. The in vivo and in vitro antimalarial activities 

of enones were deceptive due to the presence of 

antimalarial active pharmacophores such as quinolines 

and substituents [32, 33]. Quinoline-based cinchona 

alkaloids such as cinchonine, quinidine, and cinchonine 

were effective for malarial microbes. The essential 

factors in molecular design and the structure-activity 

relationship (SAR) influencing biological functions, 

including the antimalarial potency of quinoline enones, 

were minimally availed in the literature [31-33]. A 

literature survey indicated that no prior studies had 

reported the synthesis and in-vitro antimalarial 

evaluation of certain 8-quinoline enones. Thus, the 

authors wish to report the microwave-assisted greener 

synthesis and assessment of the in vitro antimalarial 

potential of 8-quinoline enones. 

2. Experimental 

2.1. General 

Entire chemical reagents employed in this investigation 

were obtained from Sigma-Aldrich Chemical Company, 

Bengaluru, India. The synthesized ketone’s melting 

points were recorded using a Raga Tech electric melting 

point device and are reported without correction. IR 

spectra were obtained with an Agilent Cary-630N 

infrared spectrophotometer using KBr discs. NMR 

spectra were acquired using a Bruker AV-III 500 

spectrometer, functioning at 400 MHz for ¹H and 100 

MHz for ¹³C nuclei. The deuterated chloroform (CDCl3) 

was utilized as the solvent, and tetramethylsilane (TMS) 

was used as the internal reference standard. Elemental 

analysis (CHN) of the ketones was conducted using a 

Perkin Elmer 240C analyzer. Mass spectra of all 

synthesized 8-quinoline enones were recorded on a 

Shimadzu mass spectrometer in EI mode. 

2.2. Formulation of nano fly-ash:H3PO4 

Nano fly-ash:H3PO4 catalyst was formulated and 

analyzed by literature method [34, 35].  

2.3. Synthesis of 8-quinonline enones 

Equimolar quantities of 8-quinoline carbaldehyde (0.01 

mol), various aryl aldehydes (0.01 mol), and 0.25 g (15.8 

wt %) of nano fly-ash:H3PO4 catalyst were exposed to 

microwave radiation for 3–6 min in 30 s intervals using 

a Samsung Grill, GW73BD Microwave Oven (230 V 

AC, 50 Hz, 2450 MHz, 100–750 W, IEC–705) (Scheme 

1). Thin Layer Chromatography (TLC) was utilized to 

screen the improvement of the reaction. Upon 

finalization, the compounds were separated by treatment 

with 10 mL of dichloromethane, the catalyst was 

recovered through simple filtration, and evaporation of 

dichloromethane yielded the target enones. The crude 

enones were further purified by recrystallization from 

ethanol afforded a glittering solid and these are kept in a 

desiccator. The heterogeneous catalyst was rinsed with 

7 mL of ethyl acetate, dried in a hot air oven for 4 h, and 

reused for subsequent reactions. 

 
Scheme 1. Fly-ash:H3PO4 catalyzed solvent-free synthesis of 

8-quinolinostyryl-substituted aryl ketones 

2.2. Antimalarial activity of 8-quinonline enones 

2.2.1. Procedure. Parasite culture:  The P. falciparum 

Thailand strain Thai and strain K1 were used for this cell 

culture [36, 37]. Culture was grown in complete medium 

consisting RPMI1640 supplemented with 27.5 mmol 

medium hydrogen carbonate, 11 mmol  glucose, each 

100 μL/mL streptomycin, penicillin and 8% heat-

inactivated human serum albumin. Parasite cultures 

were incubated on 37 °C, using A+ red blood cells of 

humanoid with hematocrit of  -3% CO2, 6% oxygen, and 

91% nitrogen atmosphere. The in vitro assays were 

performed cultures with a 3-6% parasitemia as 

determined by counting parasites on Giemsa-stained 

smears. 

2.2.2. Inhibition tests. Increasing concentration of the 

different 8-quinoline enones and amines are dissolved in 

dimethyl sulfoxide (DMSO) and examined for their 

inhibitory level towards the P. falciparum intra-

erythrocytic growth. Parasites were allowed to grow at 

37 °C for 24 h in a candle jar, the 0.5 μCi 3H-

hypoxanthine was added per well. After an additional 24 

h incubation period, plates are freeze thawed and 

harvested on filters. The scintillation liquid mixture was 

applied for moistened of dried filters and the total counts 

was gets from 1450 Micro beta counter. 

The evaluation of proportion of inhibiting 

development process was done by the parasite culture-

associated radioactivity decay. A 100% assimilation of 
3H-hypoxanthine existence was identified from 

controlled development without 8-quinoline enones. 

The IC50 quantities were determined after each mean 

concentration was estimated from three different 

experiment sets.   

3. Results and discussion 

3.1. Synthesis of enones 

As mentioned in the experimental section, we 

synthesized the 8-quinoline enones. In this 

condensation, the obtained yield was more than 83 %. 

The electron donating substituents gave more yield than 

electron-withdrawing substituents in the ketone 

moieties. This condensation undergoes well known 

acidic catalyzed crossed-aldol condensation. The 

proposed reaction mechanism was depicted in Scheme 

2. The first step consists of the protonation of carbonyl 

group aryl ketones by supply of protons from the acidic 

site of nano fly-ash:H3PO4 catalyst and that carbon gets 

positive charge. The positive charge of carbon was 
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neutralized by loss of proton from methyl group and 

enol was formed. Secondly, the 8-quinoline 

carbaldehyde carbonyl carbon was attached by this enol 

to form oxonium ion and enol carbon gets positive 

charge. The third step consists of the loss of the proton 

from the enol group to neutralize the positive charge of 

the carbon, returning it as a carbonyl group, 

simultaneously with the protonation of the oxonium ion. 

The fourth step is the loss of water through -

elimination which leads to the formation of enones. 

 

 
Scheme 2. The proposed mechanistic pathway for the synthesis of 8-quinolinostyryl substituted aryl ketones by nano fly-ash:H3PO4 

catalyzed solvent-free microwave irradiated crossed-Aldol condensation method. 

The synthesized 8-quinoline enones were 

characterized using their nature, physico-chemical, 

CHN elemental quantities, and spectroscopic data. In 

general, from infrared spectral studies, enones exhibit s-

cis and s-trans conformers, but in this investigation, the 

s-trans conformer vibrations merged with CN 

vibrations, and the conformers are shown in Figure 1.  

 
Figure 1. The s-cis and s-trans conformers of 8-

quinolinostyryl substituted aryl ketones 

The complete characterization data of the 

synthesized 8-quinoline enones are as: 

(2E)-8-Quinolinostryryl-4-bromophenyl ketone (1): 

Reaction time: 4 min. Pale yellow solid, Yield: 94%, M. 

P. 180-109 C. FT-IR (KBr, cm-1); ν = 1654 (COs-cis), 

1592 (COs-trans and CN), 1249 (CHip), 756 (CHop), 987 

(CH=CHop), 674 (C=Cop). 1H NMR (400 MHz, CDCl3) 

δ = 7.937 (d, 1H, Hα), 8.925 (d, 1H, Hβ), 7.609-8.210 

(10H, m, Ar-H). 13C NMR (100 MHz, CDCl3) δ=121.70 

(Cα), 146.58 (Cβ), 190.37 (CO), 150.44 (C=N), 124.80-

146.58 (Ar-C). Anal. for M.F.: C18H12BrNO, Found 

(Calcd.): C 63.88 (63.92), H 3.59 (3.58), N 4.09 (4.14) 

%.  M: 338. Mass (m/z) = 338[M+], 340[M2+]. 

(2E)-8-Quinolinostryryl-4-chlorophenyl ketone (2): 

Reaction time: 3.5 min. Pale brown solid, Yield: 89%, 

M. P. 130-144 C. FT- IR (KBr, cm-1); ν = 1654 (COs-

cis), 1585 (COs-trans and CN), 1252 (CHip), 758 (CHop), 

896 (CH=CHop), 675 (C=Cop). 1H NMR (400 MHz, 

CDCl3) δ = 7.934 (d,1H, Hα), 8.945 (d,1H, Hβ), 7.564 - 

8.182 (10H, m, Ar-H). 13C NMR (100 MHz, CDCl3) δ = 

121.68 (Cα), 146.56 (Cβ), 190.07 (CO), 150.40 (C=N), 

124.77-146.56 (Ar-C). Anal. for M.F.: C18H12C1NO, 

Found (Calcd.): C 73.55 (73.60), H 4.13 (14.12), N 4.72 

(4.77) %. MW: 293. Mass (m/z) = 293[M+], 295[M2+]. 

(2E)-8-Quinolinostryryl-(3,4-dimethoxyphenyl 

ketone (3): Reaction time: 3 min. Yellow solid, Yield: 

88%, M. P. 85-90 C. FT-IR (KBr, cm-1); ν = 1648 (COs-

cis), 1592 (COs-trans and CN), 1148 (CHip), 762 (CHop), 

1020 (CH=CHop), 706 (C=Cop). 1H NMR (400 MHz, 

CDCl3) δ =7.986 (d,1H, Hα), 8.911 (d, 1H, Hβ), 3.883 (s, 

6H, (OCH3)2), 7.588-8.910 (m, 9H, Ar-H). 13C NMR 

(100 MHz, CDCl3) δ = 121.61 (Cα), 146.61 (Cβ), 189.62 

(CO), 150.31 (C=N), 56.10 (OCH3), 123.28-149.17 (Ar-

C). Anal. for M.F.: C20H17NO3, Found (Calcd.): C 75.18 

(75.22), H 5.38 (5.37), N 15.01(15.03) %. M.W: 319. 

Mass (m/z) = 319[M+]. 
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(2E)-8-Quinolinostryryl-4-methylphenyl ketone (4): 

Reaction time: 3.5 min. Pale red solid, Yield: 87%, M. 

P. 80-85 C.  FT-IR (KBr, cm-1); ν =1652 (COs-cis), 1592 

(COs-trans and CN), 1233 (CHip), 753 (CHop), 1112 

(CH=CHop), 681 (C=Cop). 1H NMR (400 MHz, CDCl3) 

δ = 7.991(d, 1H, Hα), 8.911(d, 1H, Hβ), 3.896(s, 3H, 

CH3), 7.576-8.192 (10H, m, Ar-H). 13C NMR (100 

MHz, CDCl3) δ = 121.58 (Cα), 146.61 (Cβ), 189.58 

(CO), 150.30 (C=N), 29.70 (CH3), 125.22-145.71 (Ar-

C). Anal. for M.F.: C19H15NO2, Found (Calcd.): C 78.85 

(78.87), H 5.24(5.23) N 4.80 (4.84) %. MW: 289.  Mass 

(m/z) = 289[M+]. 

(2E)-8-Quinolinostryryl-3-nitophenyl ketone (5): 

Reaction time: 4.5 min. Pale brown solid, Yield: 87%, 

M. P. 70-80 C. FT- IR (KBr, cm-1): ν =1685 (COs-cis), 

1663 (COs-trans), 1164 (CHip), 719 (CHop), 1012 

(CH=CHop), 700 (C=Cop).  1H NMR (400 MHz, CDCl3) 

δ = 8.037 (d, 1H, Hα), 9.003 (d, 1H, Hβ), 7.624-8.911 

(10H, m, Ar-H). 13C NMR (100 MHz, CDCl3) δ =121.80 

(Cα), 143.56 (Cβ), 187.89 (CO), 150.57 (C=N), 123-136 

(Ar-C). Anal. for M.F.: C18H12 N2O3, Found (Calcd.): C 

72.13 (71.05), H 3.92 (3.97), N 9.18 (9.21) %. MW: 304. 

Mass (m/z) = 304 [M+]. 

(2E)-8-Quinolinostryryl-4-biphenyl ketone (6): 

Reaction time: 4.5 min. Pale yellow solid, Yield: 84%, 

M. P. 130-140 C. FT-IR (KBr, cm-1); ν = 1681 (COs-

cis), 1584 (COs-trans and CN), 1222 (CHip), 820 (CHop), 

1118 (CH=CHop), 693 (C=Cop). 1H NMR (400 MHz, 

CDCl3) δ = 8.028 (d, 1H, Hα), 8.972 (d, 1H, Hβ), 

7.597−8.210 (11H, m, Ar-H,). 13C NMR (100 MHz, 

CDCl3) δ = 121.65(Cα), 145.35(Cβ), 182.32(CO), 150.39 

(C=N), 125.27-145.35 (Ar-C). Anal. for M.F.: 

C26H21NO, Found (Calcd.): C 85.70 (85.68), H 6.12 

(6.16) %. MW: 196. Mass (m/z) = 196[M+].  

(2E)-8-Quinolinostryryl-2-naphthyl ketone (7): 

Reaction time: 4 min. Pale yellow solid, Yield:  83%, M. 

P. 130-140 C.  FT-IR (KBr, cm-1); ν =1649 (COs-cis), 

1618 (COs-trans and CN), 1164 (CHip), 786 (CHop), 1026 

(CH=CHop), 726 (C=Cop). 1H NMR (400 MHz, CDCl3) 

δ = 7.917 (d, 1H, Hα), 8.167 (d, 1H, Hβ), 7.557-8.606 (m, 

Ar-H, 10H).  13C NMR (100 MHz, CDCl3) δ = 121.65 

(Cα), 146.61 (Cβ), 191.13 (CO), 150.38 (C=N), 124.03-

141.56 (Ar-C). Anal. for M.F.: C22H15NO, Found 

(Calcd.): C 84.84 (84.78), H 4.58 (4.62), N 4.88 (4.94) 

%. MW: 283. Mass (m/z) = 283[M+].    

 (2E)-8-Quinolinostryryl-2-(9H)-Fluorenyl ketone 

(8): Reaction time: 5 min. Yellow solid, Yield: 82%, M. 

P. 70-80 C. FT-IR (KBr, cm-1); ν = 1671(COs-cis), 1605 

(COs-trans and CN), 1131 (CHip), 769 (CHop), 1017 

(CH=CHop), 686 (C=Cop). 1H NMR (400 MHz, CDCl3) 

δ = 7.452 (d, 1H, Hα), 7.758 (d, 1H, Hβ), 7.557-8.201 

(13H, m, Ar-H,).  13C NMR (100 MHz, CDCl3) δ = 

125.29 (Cα), 128.69 (Cβ), 178.56 (CO), 145.78 (C=N), 

120.91-128.69 (Ar-C). Anal. for M.F.: C25H17NO, 

Found (Calcd.): C 86.48 (86.43), H 4.87 (4.93), N 3.98 

(4.03) %. MW: 347. Mass (m/z) = 347[M+].   

(2E)-8-Quinolinostryryl-2-phenothiazene (9): 

Reaction time: 4.5 min. Brown solid, Yield: 86%, M. P. 

80-90 C. IR (KBr, cm-1 ); ν = 1643 (COs-cis), 1587 (COs-

trans and CN), 1244 (CHip), 756 (CHop), 972 (CH=CHop), 

726 (C=Cop); 1H NMR (400 MHz, CDCl3) δ = 7.923 (d, 

1H, Hα), 8.979 (d, 1H, Hβ), 7.582-8.990 (13H, m, Ar-H).  

13C NMR (100 MHz, CDCl3) δ = 121.67 (Cα), 146.62 

(Cβ), 190.47 (CO), 150.39 (C=N), 124.85-145.72 (Ar-

C). Anal. for M.F.: C24H16N2OS, Found (Calcd.): C 

75.80 (75.77), H 4.19 (4.24), N 7.29 (7.36) %. MW: 380. 

Mass (m/z) = 380[M+]. 

(2E)-8-Quinolinostryryl-5-Bezodioxal (10): Reaction 

time: 6 min. Pale yellow solid, Yield: 82%, M. P. 75-85 
oC. IR (KBr, cm-1); ν =1653 (COs-cis), 1612 (COs-trans and 

CN), 1141 (CHip), 922 (CHop), 1037 (CH=CHop), 672 

(C=Cop).  1H NMR (400 MHz, CDCl3) δ = 7.603 (d, 1H, 

Hα), 8.454 (d, 1H, Hβ), 3.780 (s, 2H, CH2), 7.585-8.068 

(10H, m, Ar-H).  13C NMR (100 MHz, CDCl3) δ = 

125.45 (Cα), 147.38 (Cβ), 188.13 (CO), 154.38 (C=N), 

44.09 (CH2), 125.45-138.71 (Ar-C). Anal. for M.F.: 

C19H13NO3, Found (Calcd.): C 75.30 (75.24), H 6.57 

(4.62), N 5.54 (4.62) %. MW: 303. Mass (m/z) = 

303[M+].  

The consequence of catalyst was investigated in this 

condensation by the observed yields for 8-quilinostryryl 

4-bromophenyl ketone (Entry 1).  As mentioned in the 

experimental section, the equal molar quantities of 8-

quinoline carbaldehyde and 4-bromophenyl methyl 

ketone were condensed with varying quantity of the 

catalyst increasing the catalyst amount from 0.05 to 0.3 

g improved the yield from 83 to 94%. The optimum 

quantity of the catalyst needs for proceeding the 

condensation reaction is 0.25 g and the obtained yield 

was 94%. There is no increase the quantity of product 

beyond 0.25 g of the catalytic substance in the 

condensation.  The obtained yields with the 

corresponding quantity of catalyst were illustrated in 

Figure 2.  

 

Figure 2. Effect of catalyst on the yield of 8-quilinostryryl-4-

bromophenyl ketone (1) 

3.2. Antimalarial activity 

The measured antimalarial potencies of 8-

quinolinestyryl substituted aryl ketones are shown in 

Table 1.  

Table 1. The antimalarial inhibition of 8-quinolinostyryl 

substituted aryl ketones. 

Entry R 
Antimalarial 

inhibition (%) 

1 4-Bromophenyl 34±0.04 

2 4-Chlorophenyl 38±0.04 

3 3.4-Dimethoxyphenyl 34±0.05 

4 4-Methylphenyl 35±0.07 

5 3-Nitrophenyl 31±0.03 

6 4-Biphenyl 29±0.07 
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Entry R 
Antimalarial 

inhibition (%) 

7 2-Naphthyl 27±0.02 

8 2-9H-Fluorenyl 28±0.06 

9 10-Phenothiazene-2-yl 30±0.07 

10 Benzodioxal-5-yl 33±0.02 

All ketones are active in antimalarial activity. 

Among these, the halogen-substituted compound shows 

more antimalarial activity. The inductive effect of 

chlorine enhances the anti-malarial action higher than 

the bromo substituent. Then the +I effect of the methoxy 

substituent demonstrated similar antimalarial potential 

as that of the bromo substituent. The +I effect of the 

methyl group slightly improves the antimalarial activity. 

The electron-withdrawing -I effect of the nitro group has 

lesser antimalarial activity compared to the chloro 

substituent. The electronegativity of oxygen in the 

benzodioxol, nitrogen, and sulfur containing 

phenothiazine rings shows lesser antimalarial activity. 

The +I effect of biphenyl, fluorenyl, and 2-naphthyl 

rings shows the lowest antimalarial activity.  

4. Conclusions 

More than 80% of ten 8-quinoline enones were 

synthesized by nano fly-ash:H3PO4 catalyzed 

microwave-irradiated solvent-free crossed-aldol 

condensation of 8-quinoline carbaldehyde and 

substituted aryl ketones. The physico-chemical methods 

and spectroscopic data are fully supported for the 

synthesized enones. In this enone synthetic strategy, the 

catalytic effect of nano fly-ash:H3PO4 was investigated 

and the optimum quantity of the catalyst for proceeding 

with the condensation reaction was identified to be 0.25 

g for 0.01 mol of aldehydes. Also, the in-vitro 

antimalarial potencies of these enones were studied 

using P. falciparum strain. All ketones show the 

inhibition of malarial activity. The halogen-substituted 

enones, such as 1 and 2, exhibit better antimalarial 

potencies than other enones.  
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