

Microwave assisted synthesis and evaluation of antimalarial potencies of some 8-quinoline enones

Pannerselvam GAYATHRI,¹ Inbasekaran MUTHUVEL,^{1, 2} Perumal MAYAVEL,^{1, 3} Kaliyaperumal RANGANATHAN,⁴ Veeramalai USHA,⁵ Veerandiran MALA,⁶ and Ganesamoorthy THIRUNARAYANAN^{*1}

¹Department of Chemistry, Annamalai University, Annamalainagar-608002, India ²Department of Chemistry, M. R. Government Arts College, Mannargudi-614001, India ³Department of Chemistry, Government Arts College, Ariyalur-621713, India ⁴Department of Chemistry, P. T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kanchipuram-

631502, India

⁵Department of Chemistry, University College of Engineering Panruti, Panruti-707106, India ⁶Department of Chemistry, Annai College of Arts and Science, Kovilacheri, Kumbakonam-612 503, India

Abstract. Ten new chalcones of 8-quinoline were efficiently synthesized via a solvent-free cross-aldol condensation between 8-quinoline carbaldehyde and various substituted aryl ketones, catalyzed by nano fly-ash:H₃PO₄ under microwave irradiation. This method afforded over 82 % yield efficiency. The resulting 8-quinoline enones were characterized through their physicochemical properties, analytical, and spectroscopic techniques. The role of the catalyst and solvents in the reaction was examined, revealing the optimal catalyst amount to be 0.25 g for 0.01 mol of aldehydes. Additionally, the *in vitro* antimalarial activity of the synthetic compounds against the intra-erythrocytic development of *Plasmodium falciparum* was evaluated. The halo-substituted 8-quinoline enones were extremely dynamic in contraction with the antimalarial microbes among the other enones.

Keywords: 8-quinoline enones; nano fly-ash:H₃PO₄; crossed-aldol condensation; microwave irradiation; IR spectra; NMR spectra; anti-malarial activity.

1. Introduction

Quinoline chalcones belong to α , β -unsaturated ketones. play a significant role in medicinal They pharmaceutical, synthetic organic, and natural product chemistry due to the presence of various biological activities and key intermediates [1-4]. Chalcones are a unique main kind of natural product with extensive dispersal in spices, vegetables, fruits, tea, and soy-based food products that possess pharmacological activities [5. 6]. The condensation of aryl ketones with aldehydes is significant, and crossed-aldol condensation is an efficient method for their synthesis. However, conventional acid-base catalyzed reactions are often affected by competing reverse processes [7]. Several catalysts, like Lewis's acids and bases [8, 9], metal oxides [10], bentonite [11], metal tungstates [12], flyash-based catalysts [13], phosphates [14], silica [15], and nanoparticles [16], were utilized for deriving aryl enones through the condensation of aryl carbonyl substrates under conventional heating or greener methods. Spectral analysis plays a key role in predicting the ground state equilibrium of α , β -unsaturated ketones [17, 18]. The E or Z configuration of the chalcones was determined based on the orientation of protons within

the alkene segment and confirmed by the coupling constant 'J' values observed in their ¹H-NMR spectra [19]. Chalcones, on the other hand, hold a pivotal role in organic synthesis, serving as precursors to an array of synthetic heterocyclic compounds like isoxazoles [20], pyrazolines [21], pyrimidines [22], and thiazoles [23]. Enone derivatives exhibit a wide spectrum of bioactivities, such as antimicrobial [1], anti-inflammatory [24], antimalarial [25], anticancer [26], antileishmanial [27], antiplasmodial [28], and antimalarial [29]. Within these activities, the enones play a significant role in biological chemistry research [20-29]. All notorious quinoline substrate drugs possess the side chain in 4 or 8 carbons and they involve the synthesis of many quinoline derivatives. However, recently, it has been described that affecting a functionalized side chain around the quinolone core to the other position causes the retention of biological activity and provides new opportunities for the design of bioactive compounds [30]. Malaria is mainly caused by the Plasmodium falciparum. As per the WHO report, approximately 156 classes of plasmodium have been availed in the biological field. There are 5 Plasmodium parasite species that cause malaria in humans, and two of these species – P. falciparum and P. vivax – pose the greatest

© 2025 Ganesamoorthy Thirunarayanan et al.

This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivsLicence (https://creativecommons.org/licenses/by-nc-nd/3.0/).

^{*} Corresponding author. *E-mail addresses:* drgtnarayanan@gmail.com; thriunarayanan.g.10313@annamalaiuniversity.ac.in (Ganesamoorthy Thirunarayanan)

threat. P. falciparum is the deadliest malaria parasite and the most prevalent on the African continent. P. vivax is the dominant malaria parasite in most countries outside of sub-Saharan Africa. The other malaria species that can infect humans are P. malariae, P. ovale, and P. knowlesi [31]. Chemists and researchers were attracted structured, cheapest synthetic by the simple methodology for the synthesis of potent, anti-malarial chalcones. The in vivo and in vitro antimalarial activities of enones were deceptive due to the presence of antimalarial active pharmacophores such as quinolines and substituents [32, 33]. Quinoline-based cinchona alkaloids such as cinchonine, quinidine, and cinchonine were effective for malarial microbes. The essential factors in molecular design and the structure-activity relationship (SAR) influencing biological functions, including the antimalarial potency of quinoline enones. were minimally availed in the literature [31-33]. A literature survey indicated that no prior studies had reported the synthesis and in-vitro antimalarial evaluation of certain 8-quinoline enones. Thus, the authors wish to report the microwave-assisted greener synthesis and assessment of the in vitro antimalarial potential of 8-quinoline enones.

2. Experimental

2.1. General

Entire chemical reagents employed in this investigation were obtained from Sigma-Aldrich Chemical Company, Bengaluru, India. The synthesized ketone's melting points were recorded using a Raga Tech electric melting point device and are reported without correction. IR spectra were obtained with an Agilent Cary-630N infrared spectrophotometer using KBr discs. NMR spectra were acquired using a Bruker AV-III 500 spectrometer, functioning at 400 MHz for ¹H and 100 MHz for ¹³C nuclei. The deuterated chloroform (CDCl₃) was utilized as the solvent, and tetramethylsilane (TMS) was used as the internal reference standard. Elemental analysis (CHN) of the ketones was conducted using a Perkin Elmer 240C analyzer. Mass spectra of all synthesized 8-quinoline enones were recorded on a Shimadzu mass spectrometer in EI mode.

2.2. Formulation of nano fly-ash:H₃PO₄

Nano fly-ash: H_3PO_4 catalyst was formulated and analyzed by literature method [34, 35].

2.3. Synthesis of 8-quinonline enones

Equimolar quantities of 8-quinoline carbaldehyde (0.01 mol), various aryl aldehydes (0.01 mol), and 0.25 g (15.8 wt %) of nano fly-ash:H₃PO₄ catalyst were exposed to microwave radiation for 3–6 min in 30 s intervals using a Samsung Grill, GW73BD Microwave Oven (230 V AC, 50 Hz, 2450 MHz, 100–750 W, IEC–705) (Scheme 1). Thin Layer Chromatography (TLC) was utilized to screen the improvement of the reaction. Upon finalization, the compounds were separated by treatment with 10 mL of dichloromethane, the catalyst was recovered through simple filtration, and evaporation of dichloromethane yielded the target enones. The crude enones were further purified by recrystallization from ethanol afforded a glittering solid and these are kept in a

desiccator. The heterogeneous catalyst was rinsed with 7 mL of ethyl acetate, dried in a hot air oven for 4 h, and reused for subsequent reactions.

R = 1. 4-Bromophenyl; 2. 4-Chlorophenyl; 3. 3,4-Dimethoxyphenyl 4. 4-Methylphenyl; 5. 3-Nitrophenyl; 6. 4-Biphenyl; 7. 2-Naphthyl 8. 2-(9H)-Fluorenyl; 9. 2-Phenothiazenyl; 10. 5-Benzodioxal

Scheme 1. Fly-ash:H₃PO₄ catalyzed solvent-free synthesis of 8-quinolinostyryl-substituted aryl ketones

2.2. Antimalarial activity of 8-quinonline enones

2.2.1. Procedure. Parasite culture: The *P. falciparum* Thailand strain Thai and strain K1 were used for this cell culture [36, 37]. Culture was grown in complete medium consisting RPMI1640 supplemented with 27.5 mmol medium hydrogen carbonate, 11 mmol glucose, each 100 μ L/mL streptomycin, penicillin and 8% heat-inactivated human serum albumin. Parasite cultures were incubated on 37 °C, using A₊ red blood cells of humanoid with hematocrit of -3% CO₂, 6% oxygen, and 91% nitrogen atmosphere. The *in vitro* assays were performed cultures with a 3-6% parasitemia as determined by counting parasites on Giemsa-stained smears.

2.2.2. Inhibition tests. Increasing concentration of the different 8-quinoline enones and amines are dissolved in dimethyl sulfoxide (DMSO) and examined for their inhibitory level towards the *P. falciparum* intraerythrocytic growth. Parasites were allowed to grow at 37 °C for 24 h in a candle jar, the 0.5 μ Ci ³H-hypoxanthine was added per well. After an additional 24 h incubation period, plates are freeze thawed and harvested on filters. The scintillation liquid mixture was applied for moistened of dried filters and the total counts was gets from 1450 Micro beta counter.

The evaluation of proportion of inhibiting development process was done by the parasite cultureassociated radioactivity decay. A 100% assimilation of ³H-hypoxanthine existence was identified from controlled development without 8-quinoline enones. The IC₅₀ quantities were determined after each mean concentration was estimated from three different experiment sets.

3. Results and discussion

3.1. Synthesis of enones

As mentioned in the experimental section, we 8-quinoline synthesized the enones. In this condensation, the obtained yield was more than 83 %. The electron donating substituents gave more yield than electron-withdrawing substituents in the ketone moieties. This condensation undergoes well known acidic catalyzed crossed-aldol condensation. The proposed reaction mechanism was depicted in Scheme 2. The first step consists of the protonation of carbonyl group aryl ketones by supply of protons from the acidic site of nano fly-ash:H₃PO₄ catalyst and that carbon gets positive charge. The positive charge of carbon was neutralized by loss of proton from methyl group and enol was formed. Secondly, the 8-quinoline carbaldehyde carbonyl carbon was attached by this enol to form oxonium ion and enol carbon gets positive charge. The third step consists of the loss of the proton from the enol group to neutralize the positive charge of the carbon, returning it as a carbonyl group, simultaneously with the protonation of the oxonium ion. The fourth step is the loss of water through β -elimination which leads to the formation of enones.

R= 1. 4-Bromophenyl, 2. 4-Chlorophenyl, 3. 3,4-Dimethoxyphenyl, 4. 4-Methylphenyl, 5. 3-Nitrophenyl, 6. 4-Biphenyl, 7. 2-Naphthyl, 8. 2-9H-Fluorenyl, 9. 2-Phenothiazenyl, 10.5- Benzodioxal

Scheme 2. The proposed mechanistic pathway for the synthesis of 8-quinolinostyryl substituted aryl ketones by nano fly-ash:H₃PO₄ catalyzed solvent-free microwave irradiated crossed-Aldol condensation method.

The synthesized 8-quinoline enones were characterized using their nature, physico-chemical, CHN elemental quantities, and spectroscopic data. In general, from infrared spectral studies, enones exhibit *s*-*cis* and *s*-*trans* conformers, but in this investigation, the *s*-*trans* conformer vibrations merged with CN vibrations, and the conformers are shown in Figure 1.

R = 1. 4-Bromophenyl; 2. 4-Chlorophenyl; 3. 3,4-Dimethoxyphenyl 4. 4-Methylphenyl; 5. 3-Nitrophenyl; 6. 4-Biphenyl; 7. 2-Naphthyl 8. 2-(9H)-Fluorenyl; 9. 2-Phenothiazenyl; 10. 5-Benzodioxal

Figure 1. The *s-cis* and *s-trans* conformers of 8quinolinostyryl substituted aryl ketones

The complete characterization data of the synthesized 8-quinoline enones are as:

(2*E*)-8-Quinolinostryryl-4-bromophenyl ketone (1): Reaction time: 4 min. Pale yellow solid, Yield: 94%, M. P. 180-109 °C. FT-IR (KBr, cm⁻¹); v = 1654 (CO_{*s*-*cis*), 1592 (CO_{*s*-*trans*} and CN), 1249 (CH_{*i*}), 756 (CH_{*o*}), 987 (CH=CH_{*o*}), 674 (C=C_{*o*}). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.937$ (d, 1H, H_a), 8.925 (d, 1H, H_β), 7.609-8.210 (10H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) δ =121.70 (C_a), 146.58 (C_β), 190.37 (CO), 150.44 (C=N), 124.80-} 146.58 (Ar-C). Anal. for M.F.: $C_{18}H_{12}BrNO$, Found (Calcd.): C 63.88 (63.92), H 3.59 (3.58), N 4.09 (4.14) %. M: 338. Mass (m/z) = 338[M⁺], 340[M²⁺].

(2E)-8-Quinolinostryryl-4-chlorophenyl ketone (2): Reaction time: 3.5 min. Pale brown solid, Yield: 89%, M. P. 130-144 °C. FT- IR (KBr, cm⁻¹); v = 1654 (CO_scis), 1585 (COs-trans and CN), 1252 (CHip), 758 (CHop), 896 (CH=CH_{op}), 675 (C=C_{op}). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.934$ (d,1H, H_a), 8.945 (d,1H, H_b), 7.564 -8.182 (10H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 121.68 (C_α), 146.56 (C_β), 190.07 (CO), 150.40 (C=N), 124.77-146.56 (Ar-C). Anal. for M.F.: C₁₈H₁₂C1NO, Found (Calcd.): C 73.55 (73.60), H 4.13 (14.12), N 4.72 (4.77) %. MW: 293. Mass $(m/z) = 293[M^+], 295[M^{2+}].$ (2E)-8-Quinolinostryryl-(3,4-dimethoxyphenyl ketone (3): Reaction time: 3 min. Yellow solid, Yield: 88%, M. P. 85-90 °C. FT-IR (KBr, cm⁻¹); v = 1648 (CO_scis), 1592 (COs-trans and CN), 1148 (CHip), 762 (CHop), 1020 (CH=CH_{op}), 706 (C=C_{op}). ¹H NMR (400 MHz, $CDCl_3$) $\delta = 7.986 (d, 1H, H_{\alpha})$, 8.911 (d, 1H, H_b), 3.883 (s, 6H, (OCH₃)₂), 7.588-8.910 (m, 9H, Ar-H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 121.61 (C_{\alpha}), 146.61 (C_{\beta}), 189.62$ (CO), 150.31 (C=N), 56.10 (OCH₃), 123.28-149.17 (Ar-C). Anal. for M.F.: C₂₀H₁₇NO₃, Found (Calcd.): C 75.18 (75.22), H 5.38 (5.37), N 15.01(15.03) %. M.W: 319. Mass $(m/z) = 319[M^+]$.

(2*E*)-8-Quinolinostryryl-4-methylphenyl ketone (4): Reaction time: 3.5 min. Pale red solid, Yield: 87%, M. P. 80-85 °C. FT-IR (KBr, cm⁻¹); v =1652 (CO_{*s*-*cis*}), 1592 (CO_{*s*-*trans* and CN), 1233 (CH_{*ip*}), 753 (CH_{*op*}), 1112 (CH=CH_{*op*}), 681 (C=C_{*op*}). ¹H NMR (400 MHz, CDCl₃) δ = 7.991(d, 1H, H_{α}), 8.911(d, 1H, H_{β}), 3.896(s, 3H, CH₃), 7.576-8.192 (10H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) δ = 121.58 (C_{α}), 146.61 (C_{β}), 189.58 (CO), 150.30 (C=N), 29.70 (CH₃), 125.22-145.71 (Ar-C). Anal. for M.F.: C₁₉H₁₅NO₂, Found (Calcd.): C 78.85 (78.87), H 5.24(5.23) N 4.80 (4.84) %. MW: 289. Mass (m/z) = 289[M⁺].}

(2*E*)-8-Quinolinostryryl-3-nitophenyl ketone (5): Reaction time: 4.5 min. Pale brown solid, Yield: 87%, M. P. 70-80 °C. FT- IR (KBr, cm⁻¹): v =1685 (CO_{s-cis}), 1663 (CO_{s-trans}), 1164 (CH_{ip}), 719 (CH_{op}), 1012 (CH=CH_{op}), 700 (C=C_{op}). ¹H NMR (400 MHz, CDCl₃) δ = 8.037 (d, 1H, H_a), 9.003 (d, 1H, H_β), 7.624-8.911 (10H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) δ =121.80 (C_a), 143.56 (C_β), 187.89 (CO), 150.57 (C=N), 123-136 (Ar-C). Anal. for M.F.: C₁₈H₁₂ N₂O₃, Found (Calcd.): C 72.13 (71.05), H 3.92 (3.97), N 9.18 (9.21) %. MW: 304. Mass (m/z) = 304 [M⁺].

(2*E*)-8-Quinolinostryryl-4-biphenyl ketone (6): Reaction time: 4.5 min. Pale yellow solid, Yield: 84%, M. P. 130-140 °C. FT-IR (KBr, cm⁻¹); v = 1681 (CO_s. cis), 1584 (CO_s-trans and CN), 1222 (CH_{ip}), 820 (CH_{op}), 1118 (CH=CH_{op}), 693 (C=C_{op}). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.028$ (d, 1H, H_a), 8.972 (d, 1H, H_β), 7.597–8.210 (11H, m, Ar-H,). ¹³C NMR (100 MHz, CDCl₃) $\delta = 121.65(C_a)$, 145.35(C_β), 182.32(CO), 150.39 (C=N), 125.27-145.35 (Ar-C). Anal. for M.F.: C₂₆H₂₁NO, Found (Calcd.): C 85.70 (85.68), H 6.12 (6.16) %. MW: 196. Mass (m/z) = 196[M⁺].

(2*E*)-8-Quinolinostryryl-2-naphthyl ketone (7): Reaction time: 4 min. Pale yellow solid, Yield: 83%, M. P. 130-140 °C. FT-IR (KBr, cm⁻¹); v = 1649 (CO_{*s*-*cis*), 1618 (CO_{*s*-*trans*} and CN), 1164 (CH_{*ip*}), 786 (CH_{*op*}), 1026 (CH=CH_{*op*}), 726 (C=C_{*op*}). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.917$ (d, 1H, H_a), 8.167 (d, 1H, H_β), 7.557-8.606 (m, Ar-H, 10H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 121.65$ (C_a), 146.61 (C_β), 191.13 (CO), 150.38 (C=N), 124.03-141.56 (Ar-C). Anal. for M.F.: C₂₂H₁₅NO, Found (Calcd.): C 84.84 (84.78), H 4.58 (4.62), N 4.88 (4.94) %. MW: 283. Mass (m/z) = 283[M⁺].}

(2*E*)-8-Quinolinostryryl-2-(9H)-Fluorenyl ketone (8): Reaction time: 5 min. Yellow solid, Yield: 82%, M. P. 70-80 °C. FT-IR (KBr, cm⁻¹); v = 1671(CO_{*s*-*cis*}), 1605 (CO_{*s*-*trans* and CN), 1131 (CH_{*ip*}), 769 (CH_{*op*}), 1017 (CH=CH_{*op*}), 686 (C=C_{*op*}). ¹H NMR (400 MHz, CDCl₃) δ = 7.452 (d, 1H, H_a), 7.758 (d, 1H, H_β), 7.557-8.201 (13H, m, Ar-H,). ¹³C NMR (100 MHz, CDCl₃) δ = 125.29 (C_a), 128.69 (C_β), 178.56 (CO), 145.78 (C=N), 120.91-128.69 (Ar-C). Anal. for M.F.: C₂₅H₁₇NO, Found (Calcd.): C 86.48 (86.43), H 4.87 (4.93), N 3.98 (4.03) %. MW: 347. Mass (m/z) = 347[M⁺].}

(2*E*)-8-Quinolinostryryl-2-phenothiazene (9): Reaction time: 4.5 min. Brown solid, Yield: 86%, M. P. 80-90 °C. IR (KBr, cm⁻¹); v = 1643 (CO_{*s*-*cis*}), 1587 (CO_{*s*-*trans*} and CN), 1244 (CH_{*ip*}), 756 (CH_{*op*}), 972 (CH=CH_{*op*}), 726 (C=C_{*op*}); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.923$ (d, 1H, H_{α}), 8.979 (d, 1H, H_{β}), 7.582-8.990 (13H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) δ = 121.67 (C_α), 146.62 (C_β), 190.47 (CO), 150.39 (C=N), 124.85-145.72 (Ar-C). Anal. for M.F.: C₂₄H₁₆N₂OS, Found (Calcd.): C 75.80 (75.77), H 4.19 (4.24), N 7.29 (7.36) %. MW: 380. Mass (m/z) = 380[M⁺].

(2*E*)-8-Quinolinostryryl-5-Bezodioxal (10): Reaction time: 6 min. Pale yellow solid, Yield: 82%, M. P. 75-85 °C. IR (KBr, cm⁻¹); v=1653 (CO_{*s*-cis}), 1612 (CO_{*s*-trans} and CN), 1141 (CH_{*ip*}), 922 (CH_{*op*}), 1037 (CH=CH_{*op*}), 672 (C=C_{*op*}). ¹H NMR (400 MHz, CDCl₃) δ = 7.603 (d, 1H, H_a), 8.454 (d, 1H, H_β), 3.780 (s, 2H, CH₂), 7.585-8.068 (10H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃) δ = 125.45 (C_a), 147.38 (C_β), 188.13 (CO), 154.38 (C=N), 44.09 (CH₂), 125.45-138.71 (Ar-C). Anal. for M.F.: C₁₉H₁₃NO₃, Found (Calcd.): C 75.30 (75.24), H 6.57 (4.62), N 5.54 (4.62) %. MW: 303. Mass (m/z) = 303[M⁺].

The consequence of catalyst was investigated in this condensation by the observed yields for 8-quilinostryryl 4-bromophenyl ketone (Entry 1). As mentioned in the experimental section, the equal molar quantities of 8quinoline carbaldehyde and 4-bromophenyl methyl ketone were condensed with varying quantity of the catalyst increasing the catalyst amount from 0.05 to 0.3 g improved the yield from 83 to 94%. The optimum quantity of the catalyst needs for proceeding the condensation reaction is 0.25 g and the obtained yield was 94%. There is no increase the quantity of product beyond 0.25 g of the catalytic substance in the condensation. The obtained yields with the corresponding quantity of catalyst were illustrated in Figure 2.

Figure 2. Effect of catalyst on the yield of 8-quilinostryryl-4bromophenyl ketone (1)

3.2. Antimalarial activity

The measured antimalarial potencies of 8quinolinestyryl substituted aryl ketones are shown in Table 1.

 Table 1. The antimalarial inhibition of 8-quinolinostyryl substituted aryl ketones.

Entry	R	Antimalarial inhibition (%)
1	4-Bromophenyl	34±0.04
2	4-Chlorophenyl	38±0.04
3	3.4-Dimethoxyphenyl	34±0.05
4	4-Methylphenyl	35±0.07
5	3-Nitrophenyl	31±0.03
6	4-Biphenyl	29±0.07

Entry	R	Antimalarial inhibition (%)
7	2-Naphthyl	27±0.02
8	2-9H-Fluorenyl	28±0.06
9	10-Phenothiazene-2-yl	30±0.07
10	Benzodioxal-5-yl	33±0.02

All ketones are active in antimalarial activity. Among these, the halogen-substituted compound shows more antimalarial activity. The inductive effect of chlorine enhances the anti-malarial action higher than the bromo substituent. Then the +I effect of the methoxy substituent demonstrated similar antimalarial potential as that of the bromo substituent. The +I effect of the methyl group slightly improves the antimalarial activity. The electron-withdrawing -I effect of the nitro group has lesser antimalarial activity compared to the chloro substituent. The electronegativity of oxygen in the benzodioxol, nitrogen, and sulfur containing phenothiazine rings shows lesser antimalarial activity. The +I effect of biphenyl, fluorenyl, and 2-naphthyl rings shows the lowest antimalarial activity.

4. Conclusions

More than 80% of ten 8-quinoline enones were synthesized by nano fly-ash:H₃PO₄ catalyzed microwave-irradiated solvent-free crossed-aldol condensation of 8-quinoline carbaldehyde and substituted aryl ketones. The physico-chemical methods and spectroscopic data are fully supported for the synthesized enones. In this enone synthetic strategy, the catalytic effect of nano fly-ash:H₃PO₄ was investigated and the optimum quantity of the catalyst for proceeding with the condensation reaction was identified to be 0.25 g for 0.01 mol of aldehydes. Also, the in-vitro antimalarial potencies of these enones were studied using P. falciparum strain. All ketones show the inhibition of malarial activity. The halogen-substituted enones, such as 1 and 2, exhibit better antimalarial potencies than other enones.

Acknowledgement

Two authors (P. Gayathri and Dr. G. Thirunarayanan) thank to RUSA-2, Field 1, Anti-Malarial Drug Synthesis, No. F3/RUSA/673/2022 dated 4-6-2022, Annamalai University, Annamalai nagar-608 002 for financial support.

Conflict of interest

The authors declare that there is no conflict of interest regarding this research article.

References

[1]. N. Suresh, H. N. Nagesh, J. Renuka, V. Rajput, R. Sharma, I. A. Khan, C. S. K. V. Gowri, Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-yl)acetyl)piperazin-1-yl) quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents, European Journal of Medicinal Chemistry 71 (2014) 324-332.

- [2]. M. Sekar, K.J.R. Prasad, Synthesis of some novel 2-oxo-pyrano(2,3-b)- and 2-oxo-pyrido(2,3-b) quinoline derivatives as potential antimalarial, diuretic, clastogenic and antimicrobial agents, Journal of Chemistry Technology and Biotechnology 72 (1998) 50-54.
- [3]. C.M. Hall, H.G. Johnson, J.B. Wright, A.J. Taylor, Quinoline derivatives as antiallergy agents. 2. Fused-ring quinaldic acids, Journal of Medicinal Chemistry 20 (1977) 1337-1343.
- [4]. G. Roma, G. Grossi, M.D. Braccio, D. Piras, V. Ballabeni, M. Tognolini, S. Bertoni, E. Barocelli, 1,8-Naphthyridines VII. New substituted 5amino[1,2,4]triazolo [4,3-a][1,8]naphthyridine-6carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastrolesivity, European Journal of Medicinal Chemistry 43 (2008) 1665-1680.
- [5]. V. Mala, I. Muthuvel, G. Thirunarayanan, S.P. Sakthinathan, R. Arulkumaran, V. Mani, R. Sundararajan, D. Kamalakkannan, R. Suresh, V. Usha, Ultrasound assisted synthesis and pharmacological evaluation of some (E)-1,2,3triphenylprop-2-en-1-ones, Ovidius University Annals of Chemistry 31 (2020)152-157.
- [6]. A. Marella, O.P. Tanwar, R. Saha, M.R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzaman, M. M. Alam, Quinoline: A versatile heterocyclic, Saudi Pharmaceutical Journal 21 (2013) 1-12.
- [7]. B.A. Hathaway, Aldol condensation experiment using a number of aldehydes and ketones, Journal of Chemical Education 64 (1987) 367-368.
- [8]. D. Kamalakkannan, R. Senbagam, G. Vanangamudi, G. Thirunarayanan, Synthesis and assessment of substituent effect of some 3-((E)-3-substituted phenylacryloyl) benzonitriles, Journal of Molecular Structure 1264 (2022) 133218. DOI: 10.1016/ j.molstruc.2022.133218.
- [9]. N.A.B. Syed, J. Malina, J. Ibrahim, A. Waqas, Review of methods and various catalysts used for chalcone synthesis, Mini-Reviews in Organic Chemistry 10 (2013) 73-83
- [10]. S. Saravanamurugan, M. Palanichamy, A. Banumathi, V. Murugesan, Solvent free synthesis of chalcone and flavanone over zinc oxide supported metal oxide catalysts, Catalysis Communications 9 (2005) 399-403.
- [11]. I. Muthuvel, S. Dineshkumar, K. Thirumurthy, B. Krishnakumar, G. Thirunarayanan, A new solid acid catalyst bentonite/FeCl₃ for aldol condensation under solvent-free condition, Indian Journal of Chemistry 55B (2016) 252-260.
- [12]. K.D. Dhawale, A.P. Ingale, M.S. Pansare, S.S. Gaikwa, N.M. Thorat, L.R. Pati, Sulfated tungstate as a heterogeneous catalyst for synthesis of 3functionalized coumarins under solvent-free Conditions, Polycyclic Aromatic Compounds 43 (2023) 3588–3600.
- [13]. G. Thirunarayanan, P. Mayavel, K. Thirumurthy, Fly-ash:H₂SO₄ catalyzed solvent free efficient synthesis of some aryl chalcones under microwave

irradiation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 91 (2012) 18-22.

- [14]. V. Mala, I. Muthuvel, G. Thirunarayanan, V. Usha, Catalytic effect of nano cadmium phosphate catalyst on the synthesis of some (*E*)-3,4dimethoxyphenylprop-2-en-1-ones, Materials Today Proceedings 43 (2021) 2117-2122.
- [15]. G. Thirunarayanan, G. Vanangamudi, Synthesis of some 4-bromo-1-naphthyl chalcones using silicasulfuric acid reagent under solvent free conditions, Arkivoc 12 (2006) 58-64
- [16]. K. G. Sekar, P. Janaki, I. Muthuvel, V. Usha, K. Thirumurthy, G. Thirunarayanan, Catalytic behaviour of solid acidic SO₄²⁻-SnO₂-fly ash peony flower like nano catalyst on the synthesis of some *E*-Pyrenyl enones, Materials Today Proceedings 43 (2021) 2208-2214.
- [17]. I. Muthuvel, G. Thirunarayanan, V. Thangaraj, N. Sundaramurthy, S. Rajalakshmi, V. Usha, Study of catalytic activity of Zn₃(PO₄)₂ on the synthesis of some pyrenyl enones, Materials Today Proceedings 43 (2021) 2203-2207.
- [18]. K. Ranganathan, D. Kamalakkannan, R Suresh, SP. Sakthinathan, R. Arulkumaran, R. Sundararajan, V. Manikandan, P. Venkatachalam, S. Rajalakshmi, I. Muthuvel, G. Thirunarayanan, Cu^{2+/}Zeolite catalyzed Aldol condensation: Greener synthesis of 4'-piperidinophenyl enones, Materials Today Proceedings 22 (2020) 1196-1199.
- [19]. S. Balaji, V. Manikandan, M. Rajarajan, V. Usha, S. Rajalakshmi, P. Venkatachalam, I. Muthuvel, G. Thirunarayanan, Investigation of catalytic activity of solid acidic FeCl₃/Bentonite catalyst on the synthesis of some (*E*)-1-(2,4-Dimethylthiazol-5yl)-3-phenylprop-2-en-1-ones by solvent-free technique, Materials Today Proceedings 22 (2020) 931-936.
- [20]. C. Geetha, P. R. Rajakumar, P. Christuraj, V. Manikandan, R. Arulkumaran, G. Thirunarayanan, Synthesis, spectral correlation study, antibacterial and antifungal activities of substituted 5-(4fluorophenyl)-3-phenylisoxazoles, Journal of Advanced Scientific Research 10(4) (2019) 156 -166.
- [21]. G. Thirunarayanan, K. G. Sekar, Solvent-free onepot cyclization and acetylation of chalcones: Synthesis of some 1-acetylpyrazoles and spectral correlations of 1-(3-(3,4-dimethylphenyl)-5substitutedphenyl)-4,5-dihydro-1H-pyrazole-1-yl) ethanones, Journal of Saudi Chemical Society 20 (2016) 661-672.
- [22]. R. Arulkumaran, R. Sundararajan, V. Manikandan, V. Sathiyendiran, S. Pazhamalai, G. Thirunarayanan, IR and 1H NMR spectral studies of some 2-Amino-4-isopropyl-6-methoxy-Nphenylpyrimidine-5-carboxamides: Assessment of substituent effects, International Letters of Chemistry, Physics and Astronomy 38 (2014) 15-25.
- [23]. E. Rizk Khidre, R. Sameh, E. Gogary, S. Mohamed, Mostafa, Design, Synthesis, and antimicrobial evaluation of some novel pyridine,

coumarin, and thiazole derivatives, Journal of Heterocyclic Chemistry 54 (2017) 2511–2319.

- [24]. W.M. Abdou, R.E. Khidre, A.A. Kamel, Elaborating on efficient anti-proliferation agents of cancer cells and anti-inflammatory-based Nbisphosphonic acids, Arch Pharm Chemistry in Life Sciences 345 (2012) 123-136.
- [25]. F.J. Smit, D.D. N'da, Synthesis in vitro antimalarial activity and cytotoxicity of novel 4aminoquinolinyl-chalcone amides, Bioorganic & Medicinal Chemistry 22 (2014) 1128-1138.
- [26]. R. Abonia, D. Insuasty, J. Castillo, B. Insuasty, J. Quiroga, M. Nogueras, J. Cobo. Synthesis of novel quinoline-2-one based chalcones of potential antitumor activity, European Journal of Medicinal Chemistry 57 (2012) 29-40.
- [27]. S.U.F. Rizvi, H.L. Siddiqui, M.N. Ahmad, M. Ahmad, M.H. Bukhari, Novel quinolyl-thienyl chalcones and their 2-pyrazoline derivatives with diverse substitution pattern as antileishmanial agents, against Leishmania major, Medicinal Chemistry Research 21 (2012) 1322-1333.
- [28]. R. Arulkumaran, R. Sundararajan, G. Vanangamudi, M. Subramanian, K. Ravi, V. Sathiyendiran, S. Srinivasan, G. Thirunarayanan, Infrared spectral linearity of some anti-plasmodial potent chalcones, IUP Journal of Chemistry 3 (2010) 82-98.
- [29]. A. Kharazmi, M. Chen, T. Theander, S.B. Christensen, Discovery of oxygenated chalcones as novel antimalarial agents, Annals of Tropical Medicine and Parasitology 91 (1997) 91–95.
- [30]. S. Eswaran, A. Vasudeva, A. Imran, H. Chowdhury, N.K. Pal, K. Thomas, New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties, European Journal of Medicinal Chemistry 45 (2010) 3374–83.
- [31]. M. L. Go, Novel antiplasmodial agents, Medicinal Research Reviews 23 (2003) 456-487.
- [32]. P. Cheng, L. Yang, X. Huang, X. Wang, M. Gong, Chalcone hybrids and their antimalarial activity, Arch Pharm Chemistry in life Sciences 353 (2020) 353, 1900350. DOI: 10.1002/ardp.201900350
- [33]. S. Sinha, B. Medhi, B.D. Radotra, D.I. Batovska, N. Markova, A. Bhalla, R. Sehgal, Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complementary Medicine and Therapies 22 (2022) 330. DOI: 10.1186/s12906-022-03777-w.
- [34]. S. John Joseph, K. Ranganathan, R. Suresh, R. Arulkumaran, R. Sundararajan, D. Kamalakkannan, S.P. Sakthinathan, G. Vanangamudi, S. Dineshkumar, K. Thirumurthy, I. Muthuvel, G. Thirunarayanan, K. Viveksarathi, and Synthesis, characterization synthetic applications of fly-ash:H₃PO₄ nanocatalyst, Material Science and Applied Chemistry 34 (2017) 12-20.
- [35]. V. Boobal Arasu, G. Thirunarayanan, I. Muthuvel,
 S. Kulanthaivel, Effect of Fly-ash:H₃PO₄ nano catalyst on the synthesis of piperazinyl

carbothioamide, Materials Today Proceedings *in press*. DOI: 10.1016/j.matpr.2023.05.170.

- [36]. A. Valla, B. Valla, D. Cartier, R.L. Guillou, R. Labia, L. Florent, S. Charneau, J. Schrevel, P. Potier, New syntheses and potential antimalarial activities of new retinoid-like chalcones, European Journal of Medicinal Chemistry 41 (2006) 142-146.
- [37]. A.K. Maji, Drug susceptibility testing methods of antimalarial agents, Tropical Parasitology 8 (2018) 70–76.

Received: 06.04.2025 Received in revised form: 08.06.2025 Accepted: 11.06.2025