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Abstract. This paper presents a statistical approach to water pollution analysis and forecasting based on time series data 

collected from a section of the Nistru River near Olănești, Republic of Moldova. The study focuses on three key pollutants: 

ammonia nitrogen, total phosphorus, and mineral phosphorus, using the values of concentrations recorded in 2019-2023. 

Descriptive statistics and exploratory visualizations were used to assess the variability, central trends and potential 

exceedance of maximum allowable concentrations (MACs). The forecasting methodology is based on the AutoRegressive 

Integrated Moving Average (ARIMA) model, widely recognized for its efficiency in modeling univariate time series with 

time dependence. The individual ARIMA models have been fitted and validated for each pollutant and the forecasts have 

been extended to the year 2026. The proposed methodology supports both environmental decision-making and early 

warning systems by integrating robust statistical models with domain-specific knowledge. 
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1. Introduction 

The impact of pollutants on the human body is a 

complex issue, as most often the source of pollution is 

non-point source pollution. Non-point sources are 

difficult to identify because they are indirect sources of 

emissions and usually originate from multiple locations 

at a time. Nitrogen and phosphorus are naturally present 

in aquatic ecosystems, but human activities such as 

fertilizer use, wastewater management, fossil fuel 

combustion, soap and detergent runoff are polluting 

ecosystems with excess nutrients faster than they can 

adapt [1]. 

To this day, nitrogen and phosphorus compounds are 

widely used in various industries, such as chemical and 

metalworking. Their use in agriculture, including total 

and mineral phosphorus and ammoniacal nitrogen, is 

also possible as fertilizers. Fertilizers are a necessary 

tool for improving soil health. However, it should also 

be remembered that their thoughtless use can lead to 

soil, air, and water pollution. This pollution can occur 

both from the fertilizer components themselves and 

from their contaminants, including toxic micronutrients 

from inorganic fertilizers and pathogens from organic 

fertilizers. Since humans began using inorganic 

fertilizers, levels of nitrogen and phosphorus 

compounds in water, air, and soil have doubled over the 

past 100 years. This, of course, has a negative impact on 

plants, animals, and humans [2].  

Today, the use of fertilizers in agriculture is 

increasing, especially in recent years, and information 

about their impact on human health and the environment 
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is very limited. If we examine the report of the third 

session of the UN Environment Assembly, we find a 

lack of accessible information on the impact of 

fertilizers on both human health and the environment 

[3].  

There is compelling evidence that exposure to 

inorganic fertilizers is associated with an increased risk 

of cancer, and a small number of studies even have 

methodological limitations and poor reproducibility. 

There are also scientific studies linking organic 

fertilizers to various infectious diseases and diarrhea. 

Agricultural runoff, which contains many toxic 

chemicals and pesticides, is particularly dangerous. 

These are typically intended to kill harmful insects and 

rodents. The most hazardous compounds found in this 

wastewater are nitrogen and phosphorus. People are 

typically exposed to these chemicals in several ways, for 

example, by eating fish, swimming, drinking 

contaminated water, or even inhaling polluted air. This 

causes a variety of health problems. These can include 

skin rashes, liver and kidney disease, neurological 

problems, or respiratory issues. Nitrates, a form of 

nitrogen most commonly found in fertilizers, can leach 

into drinking water in high concentrations, especially in 

agricultural areas, causing serious health problems. 
Infants are particularly susceptible to these negative 

impacts. Recent studies examining the effects of 

inorganic fertilizers in water and their impact on the 

human body have found a link between their exposure 

and the development of tumors in organs such as the 

lungs, breasts, and brain. Hematological malignancies 

have also been reported, accompanied by general 
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symptoms such as skin lesions, neurological, 

respiratory, and a number of other diseases [4].  

The current medical literature contains data on 

congenital disorders of various organs, developmental 

diseases, hematological diseases, infections, rheumatic 

diseases, diabetes, neurological, and vascular diseases. 

Data on the development of psychiatric diseases can also 

be found. If we consider a 2024 systematic review, we 

will find data indicating that exposure to inorganic 

fertilizers has been associated—in a limited number of 

studies—with an increased risk of oncological 

outcomes, including tumors of solid organs and 

hematological malignancies [5]. There is a study that 

long-term consumption of nitrates (usually obtained 

from fertilizers in drinking water) was associated with 

an increased risk of prostate cancer, and the effect was 

stronger for aggressive tumors subtypes [6]. Scientific 

studies on soil and water pollution show that chemicals 

from agricultural runoff, such as nitrates, heavy metals 

and other agropollutants, significantly contribute to the 

development of cardiovascular diseases. This occurs 

through mechanisms such as oxidative stress, 

endothelial damage and chronic inflammation [7].  

Finally, a scientific study on the effects of heavy 

metals present in widely used nitrogen, phosphorus and 

potassium (NPK) fertilizers showed that after the 

application of fertilizers, the levels of metals such as Pb, 

Cu, Cd and Cr in water and sediments increase. These 

studies cannot but raise concerns among experts about 

the impact of these harmful substances through the food 

chain on aquatic flora and fauna and especially on 

human health in general [8].   

Based on the above, it can be concluded that 

epidemiological data indicate possible links between 

inorganic fertilizers such as nitrogen and phosphorus 

compounds and various diseases, including malignant 

tumors. However, the available evidence is limited and 

heterogeneity prevails. Further research is needed to 

expand the evidence base and improve the reliability of 

replication and robustness of the results. 

The assessment and prediction of water pollution are 

essential components of sustainable environmental 

management, especially in regions where water 

resources are vulnerable to anthropogenic pressures. 

River ecosystems such as the Nistru are exposed to 

various sources of contamination, including agricultural 

runoff, domestic effluents, and industrial discharge. 

Water pollution assessment and prediction are essential 

components of sustainable environmental management, 

especially in regions where water resources are 

vulnerable to anthropogenic pressures. In this context, 

statistical analysis plays a central role in understanding 

historical trends and in supporting informed decision-

making for pollution control and mitigation [9].  

Exploratory data analysis (EDA) provides a 

structured approach to identifying patterns, anomalies, 

and distributional features in environmental data sets. 

Techniques such as descriptive statistics, histograms, 

and skewness coefficients are commonly used to 

uncover the underlying structure of time-series data 

prior to formal modeling. EDA not only improves data 

quality assessment, but also guides the selection of 

appropriate modeling techniques, revealing seasonality, 

trends, and outliers [10, 11]. It is particularly important 

in environmental time-series studies, where issues such 

as missing values, non-stationarity or auto-correlation 

may bias forecasts if not first explored and addressed. 

Recent research underlines how EDA enables the 

detection of structural changes and hidden temporal 

dependencies before applying predictive models, 

improving both interpretability and forecast reliability 

[12, 13, 14]. 

The ARIMA (AutoRegressive Integrated Moving 

Average) model is widely used for pollution prediction. 

By incorporating autoregressive components and 

moving averages, ARIMA models can produce accurate 

short-term forecasts, which are essential for 

environmental monitoring and early warning systems. 

The use of ARIMA in water quality prediction has been 

validated in several studies, strengthening its relevance 

in environmental statistics. One of the key advantages of 

the ARIMA model lies in its flexibility to capture both 

trend and seasonality components in time-dependent 

data. Moreover, by optimizing parameters through 

techniques such as the Akaike Information Criterion 

(AIC), the model can achieve a balance between 

accuracy and complexity, ensuring robust and 

interpretable forecasts [15, 16, 17]. 

Applications show that ARIMA and its seasonal 

extensions (e.g., SARIMA) remain competitive even 

when compared to more complex machine-learning 

approaches in the water-quality domain. Furthermore, 

the interpretability of ARIMA models makes them 

particularly suitable for regulatory and management 

contexts, where understanding model structure and 

residual behaviour is critical [18, 19]. 

2. Methodology 

This study investigates the temporal evolution and 

forecasting of key pollutants in a monitored sector of the 

Nistru River, using time series data collected over a five-

year period. The study of pollutant dynamics in river 

ecosystems requires both a descriptive understanding of 

the data and the ability to model and predict future 

concentrations. For this purpose, the methodological 

approach used in this study includes Exploratory Data 

Analysis (EDA) and time series forecasting with the 

ARIMA model. 

2.1. Data   

The data for the analysis was taken from monthly reports 

on environmental quality in the Republic of Moldova for 

the period 2019-2023, provided by the Environmental 

Agency [20]. Data was collected with a total of seven 

measurements for mineral phosphorus, six for total 

phosphorus, and five for ammonium nitrogen. Only the 

values of concentrations exceeding the maximum 

allowable concentrations (MACs) were recorded. The 

MAC values for Class I water quality were considered 

in accordance with the Regulation on Environmental 

Quality Requirements for Surface Waters [21], namely 

0.05 mg/L for mineral phosphorus, 0.1 mg/L for total 

phosphorus, and 0.2 mg/L for ammonium nitrogen. For 

each year in the mentioned period, between 1 and 2 

samples each for the three key pollutants (mineral 
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phosphorus, total phosphorus and ammonium nitrogen) 

were available in the dataset. 

Mineral phosphorus concentrations ranged from 

0.11 to 0.44 mg/L, with the highest level observed in 

December 2019 and the lowest in January 2023. Except 

for the 2019 maximum, most values clustered between 

0.11–0.16 mg/L, suggesting relative stability and a 

slight decreasing trend in the later years. Total 

phosphorus showed a wider interval, between 0.19 and 

0.59 mg/L, peaking in December 2019. After 2020, 

concentrations stabilized in a narrower range (0.20–0.24 

mg/L), pointing to more balanced conditions. 

Ammonium nitrogen values were between 0.08 and 0.70 

mg/L, with the exception of an extreme of 8.3 mg/L 

recorded in September 2022. 

2.2. Analysis methods for the pollutants 

For the analysis of ammonium nitrogen, total 

phosphorus, and inorganic phosphorus, Exploratory 

Data Analysis (EDA) techniques were applied, followed 

by time series modeling using the ARIMA 

(AutoRegressive Integrated Moving Average) approach 

to forecast future pollutant concentrations. 

Exploratory Data Analysis (EDA). Exploratory Data 

Analysis serves as a preliminary step in any statistical 

investigation and is crucial in environmental science, 

especially when assessing water quality over time. The 

main goal of EDA is to summarize the main 

characteristics of the data before applying more complex 

modeling techniques. It helps to identify patterns, detect 

outliers, highlight trends or seasonality, and understand 

the variability within the data set [10, 13]. 

In this study, basic descriptive statistics were used to 

analyze the temporal variation in the concentrations of 

pollutants such as ammonium nitrogen, total 

phosphorus, and mineral phosphorus. The mean and 

standard deviation provide insight into the central 

tendency and dispersion of the data, while the skewness 

coefficient indicates the asymmetry of the distribution. 

These indicators are essential for assessing the level of 

fluctuations and the potential risk of exceeding 

regulatory thresholds. 

Graphical techniques were also employed, such as 

histograms and time plots, which allow for visual 

identification of changes over time. Time series plots in 

particular are valuable for detecting non-random 

structures in the data, such as trends, cycles, or abrupt 

changes due to natural or anthropogenic factors. These 

representations support the detection of pollution events 

and help inform the selection of appropriate statistical 

models for forecasting. 

Time Series Forecasting with ARIMA. To forecast future 

pollutant concentrations, this study used the ARIMA 

(AutoRegressive Integrated Moving Average) model, 

which is widely recognized for its robustness in 

modeling and predicting univariate time series [12, 13, 

14]. The ARIMA model integrates three key 

components: 

• The autoregressive part models the dependency 

between an observation and a specified number of its 

own previous values. 

• The integrated part refers to the process of 

differencing the data to achieve stationarity — a 

property necessary for consistent forecasting. 

• The moving average part models the relationship 

between an observation and past forecast errors. 

The modeling process follows the Box–Jenkins 

methodology, which involves identifying an appropriate 

model structure based on autocorrelation patterns, 

estimating model parameters, and performing diagnostic 

checks to validate model assumptions.  

The ARIMA model is particularly suitable in 

environmental studies where historical data is available, 

but external variables are limited or not incorporated. In 

this case, it allows for medium-term projections of 

pollutant levels and the evaluation of whether forecasted 

concentrations are likely to exceed the maximum 

admissible concentration (MAC) set by environmental 

standards. 

3. Results and discussion 

Data on pollution of the Nistru River sector in Olănești, 

Republic of Moldova were analyzed. It was found that 

in the sector of the mentioned frequent branches, during 

the period 2019-2023, the maximum permissible 

concentrations for the pollutants: mineral phosphorus, 

total phosphorus and ammonium nitrogen were 

exceeded. For this reason, the data on the values of the 

listed pollutant concentrations were subjected to 

analysis using statistical methods and the ARIMA 

algorithm. 

First, descriptive statistics were applied for all three 

pollutants. The results obtained using the R language are 

presented in Table 1. 

Table 1. Descriptive statistics. 

Pollutant 
Sample 

count 

Mean 

(mg/L) 

Median 

(mg/L) 

Std. 

deviation 

Min 

(mg/L) 

Max 

(mg/L) 

Mineral 

phosphorus 
7 0.174 0.129 0.119 0.11 0.44 

Total 

phosphorus 
6 0.331 0.240 0.175 0.19 0.59 

Ammonium 

nitrogen 
5 2.070 0.683 3.490 0.08 8.30 

We can conclude that Mineral and total phosphorus 

show moderate and steady exceedances. Ammonium 

nitrogen displays critical and irregular peaks, possibly 

indicating occasional pollution events or failures in 

waste treatment systems. 

Next, the data under examination were presented 

graphically using a histogram (see Figure 1). 

From Figure 1 we observe the frequency distribution 

of concentrations (mg/L) for three types of pollutants 

measured in a river sector: 

1. Mineral phosphorus (red bars) 

• The majority of observations (3 occurrences) fall 

within the 0.1–0.2 mg/L range. 

• A smaller number (1 observation) falls into the 0.3–

0.4 mg/L range. 

• Mineral phosphorus levels are generally low, 

clustering near the lower end of the scale. 
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Figure 1. Distribution of exceeding concentrations by 

pollutant. 

2. Total phosphorus (blue bars) 

• The highest frequency (4 values) is observed in the 

0.2–0.3 mg/L interval. 

• Two other values appear in the 0.4–0.5 and 0.5–0.6 

mg/L intervals. 

• Although total phosphorus concentrations are 

generally moderate, some higher values are also 

present, suggesting variability in overall phosphorus 

input. 

3. Ammonium nitrogen (green bars) 

• Most values (4 observations) fall below 2.5 mg/L, 

indicating a generally low concentration. 

• However, a noticeable outlier (1 observation) is in 

the 7.5–10 mg/L range. 

• While ammonium nitrogen is usually at a low level, 

the presence of an outlier suggests a potential 

pollution event or spike that should be further 

investigated. 

To make prediction scenarios for the analyzed 

pollutants for the years 2024-2026, the ARIMA 

algorithm was applied. The results for mineral 

phosphorus are presented in Figure 2. 

 

Figure 2. Forecast for mineral phosphorus. 

The detailed interpretation of the results in Figure 2 

is as follows: 

1. Black line: Represents the historical values of the 

pollutant concentration for the period 2019–2024. A 

slight decrease and stabilization over time can be 

observed. 

2. Blue line: Shows the forecasted average concentration 

for the years 2025 and 2026, based on the ARIMA 

model. 

3. Blue bands (confidence intervals): 

• The darker blue area indicates the 80% confidence 

interval. 

• The lighter blue area corresponds to the 95% 

confidence interval. 

These bands reflect the uncertainty of the estimation — 

actual values may fluctuate within this range. 

4. Red dashed line: Marks the regulatory threshold 

(maximum admissible concentration) for the pollutant. 

If the forecast exceeds this line, it indicates a potential 

risk of pollution above the legal limit. 

For the years 2025–2026, the model estimates that 

average values will remain close to, but still below, the 

admissible limit. However, uncertainty increases over 

time — after 2025, the confidence intervals widen 

significantly. Although the mean forecast remains safe, 

there is a real probability that actual values may 

temporarily exceed the threshold if they fall within the 

upper bound of the blue confidence band. 

The results of applying ARIMA for total phosphorus 

are shown in Figure 3. 

 

Figure 3. Forecast for total phosphorus. 

The detailed interpretation of the results in Figure 3 

is as follows: 

1. Black line (historical data): 

• This line shows the observed concentrations of Total 

Phosphorus from 2019 to 2023. 

• The trend appears to be slightly decreasing and 

relatively stable, with values close to or slightly above 

the MAC (Maximum Admissible Concentration). 

2. Blue line (forecast mean): 

• Represents the ARIMA-predicted average 

concentrations for the years 2024 to 2026. 

• The line shows a slight upward trend, indicating a 

potential increase in concentration over time. 

3. Blue shaded areas (confidence intervals): 

• The inner and outer shaded regions represent 80% 

and 95% confidence intervals, respectively. 

• The widening funnel shape reflects increasing 

uncertainty in long-term forecasts. 

• By 2026, values could range from well below to 

significantly above the MAC. 

4. Red dashed line (MAC – Maximum Admissible 

Concentration): 

• Set at 0.1 mg/L, this is the reference threshold for 

safe phosphorus levels. 
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• Historical values are slightly above, and predicted 

values have a high probability of remaining above the 

MAC, especially the upper bound of the forecast. 

The results of applying ARIMA for ammonium 

nitrogen are shown in Figure 4. 

 

Figure 4. Forecast for ammonium nitrogen. 

The detailed interpretation of the results in Figure 4 

is as follows: 

1. Black line: Represents the historical values of the 

pollutant concentration from 2019 to 2024. The graph 

shows a slight increase between 2021 and 2023, 

followed by a sudden drop before entering the forecast 

period. 

2. Blue line: Depicts the forecasted average 

concentration for the years 2025 and 2026 based on the 

ARIMA model. 

3. Blue bands (confidence intervals): 

• The darker blue area represents the 80% confidence 

interval. 

• The lighter blue area shows the 95% confidence 

interval. 

These intervals express the range of possible future 

values, considering model uncertainty. A wider band 

indicates greater uncertainty in the prediction. 

4. Red dashed line: Indicates the maximum admissible 

concentration according to environmental regulations. 

Although the historical data shows values fluctuating 

around the admissible limit, the forecast suggests that 

the mean predicted concentration for 2025–2026 will 

stabilize close to the normative limit. However, the 

uncertainty grows significantly into the future — as seen 

from the widening blue bands. This means there's a 

growing chance that actual future values could fall well 

above or below the average estimate. 

4. Conclusions 

This study demonstrates the utility of statistical methods 

– in particular Exploratory Data Analysis (EDA) and 

ARIMA time series modeling – for assessing and 

forecasting the temporal evolution of pollutants in the 

Nistru River near Olănești. Forecasts were generated for 

the period up to 2026, supporting the use of data-driven 

approaches to monitor environmental conditions and 

inform local water management strategies. 

The three most frequently encountered pollutants 

were assessed: mineral phosphorus, total phosphorus 

and ammonium nitrogen. The following findings were 

made: 

• Mineral phosphorus: Projections indicate that 

concentrations are likely to remain below the regulatory 

limit until 2026, but occasional exceedances remain 

possible. Continued monitoring is recommended. 

• Total phosphorus: Levels are expected to increase 

moderately until 2026, with a high risk of exceeding the 

MAC. Preventive or mitigation actions are needed due 

to significant uncertainty in the forecast. 

• Ammonium nitrogen: Forecasted concentrations 

remain close to the safety threshold through 2026, but 

wide confidence intervals highlight the importance of 

sustained monitoring. 

Overall, statistical forecasting provides significant 

insights into the behavior of pollutants, enabling early 

warning signals and supporting ecological protection 

efforts through informed decision-making. 
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